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Run ipython qtconsole and import SymPy

Today we will work in a python shell and we will use the sympy
module.

Please run ipython qtconsole:
Windows with Anaconda: Start → (All) Applications →
Anaconda3 → Jupyter QTConsole
Linux: ipython3 qtconsole

Import the whole sympy module into the current namespace:
from sympy import *

And initialize the best SymPy pretty-printer for your environment,
to get pretty printing of SymPy expressions:
init_printing()
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About SymPy and Symbolic Computation

SymPy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system (CAS);
symbolic computation deals with the computation of
mathematical objects symbolically;
objects (like

√
2) are represented exactly, not approximately,

and mathematical expressions with unevaluated variables
(like x) are left in symbolic form.

Example: execute:
import math imports the math module;
math.sqrt(9)

√
9 calculated exactly by the math module;

sqrt(9) similar to the above, but calculated by SymPy;
math.sqrt(8) approximation of

√
8 calculated by the math

module;
√
8 is an irrational number and cannot

be represented exactly by a finite decimal;
sqrt(8) SymPy gives accurate, symbolic result; symbol-

ically simplified:
√
8 =
√
4 · 2 = 2

√
2.
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Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)
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Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17



Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17



Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17



Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17



Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17



Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17



Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17



Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)
Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17



Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)
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Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})
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Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)
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Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})
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Plotting

The plot function plots functions of a single variable.

Examples: execute:
plot(x**2) plots x2 in the default range (−10, 10);
plot(x**2, (x, -2, 5)) plots in the given range (−2, 5);
plot(x**2, 3*x, (x, 0, 5)) plots both x2 and 3x ;
plot(x**2, (x,0,5), title="square", ylabel="x*x")
a title of the plot is “square”, a label for the y-axis is “x*x”;
plot(exp(x**2), (x, 0, 5)) plots exp(x2);
plot(exp(x**2), (x, 0, 5), yscale=’log’) uses a
logarithmic scale for the y-axis, which increases readability.

Exercise: plot sin(x) in the range (−2π, 2π)

Code: plot(sin(x), (x, -2*pi, 2*pi))
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Limits

limit(f(x), x, p) computes limx→p f (x)
(the limit of f(x) at the point p), e.g. (execute):
limit(sin(x)/x, x, 0) computes limx→0

sin(x)
x ;

limit(x+y, x, 2) computes limx→2(x + y);
limit(x**2/exp(x), x, oo) computes limx→∞

x2

ex .

oo (the lowercase letter “o” twice) denotes ∞ (infinity).

To evaluate a one-sided limit, pass additional ’+’ or ’-’
argument, e.g. limit(1/x, x, 0, ’+’) computes limx→0+ 1

x .

Exercises: compute:
1 limx→0−

1
x

Code: limit(1/x, x, 0, ’-’)

2 limx→0
x+y

x

Code: limit((x+y)/x, x, 0)

3 limx→−∞ sin(x)

Code: limit(sin(x), x, -oo)

10 / 17



Limits

limit(f(x), x, p) computes limx→p f (x)
(the limit of f(x) at the point p), e.g. (execute):
limit(sin(x)/x, x, 0) computes limx→0

sin(x)
x ;

limit(x+y, x, 2) computes limx→2(x + y);
limit(x**2/exp(x), x, oo) computes limx→∞

x2

ex .

oo (the lowercase letter “o” twice) denotes ∞ (infinity).
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Sums and products
summation(f, (i, a, b)) computes

∑b
i=a f (i) (the sum of f

with respect to i from a to b);
product(f, (i, a, b)) computes

∏b
i=a f (i) (the product of f

with respect to i from a to b).
Example: execute:
i,n = symbols(’i,n’, integer=True) defines integer symbols;
summation(1/(2**i), (i, 1, oo)) =

∑∞
i=1

1
2i = 1

2 + 1
4 + . . . ;

summation(x/(2**i), (i, 1, oo)) =
∑∞

i=1
x
2i = x

2 + x
4 + . . . ;

product(n**n, (n, 5, 20))
∏20

n=5 nn = 55 · 66 · . . . · 2020;
product(i, (i, 1, n))

∏n
i=1 i = n!.

Exercise: calculate:
1
∏10

i=1 ni

product(n**i, (i, 1, 10))

2
∑∞

n=1
6
n2

summation(6/n**2, (n, 1, oo))

3
∑∞

n=1
xn

n! (simplify the result expression)

summation(x**n/factorial(n), (n, 1, oo)).simplify()
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Solving inequalities and equations algebraically
solveset(f, symbol, domain) solves the inequality or equation
f over domain (S.Complexes by default); returns a set of all
values for symbol for which f is True or is equal to zero.
Examples: execute:

solveset(x**2>2, x, S.Reals) solves x2 > 2 for real x ;
solveset(Eq(x**4, 2), x) and solveset(x**4-2, x)
both solve x4 = 2; equations may be in the form of Eq
instances or expressions that are assumed to be equal to 0;
a,b,c = symbols(’a,b,c’)
simplify(solveset(a*x**2 + b*x + c, x)) finds (and
simplifies) the general solution of quadratic equation.

Exercises: find all real x such that:
1 x4 = 2

solveset(x**4 - 2, x, S.Reals)

2 sin(x) = cos(x)

solveset(sin(x)-cos(x), x, S.Reals)

3 x2 > 2 ∧ x < 5 (hint: use & to intersect solveset results)

solveset(x**2>2,x,S.Reals)&solveset(x<5,x,S.Reals)
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Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17



Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17



Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17



Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17



Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17



Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17



Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x Code: diff(x**3+2*y, x)

2 y Code: diff(x**3+2*y, y)
13 / 17



Integrals

To compute an integral, use the integrate function.

To compute an indefinite integral, just pass the variable after the
expression, e.g. integrate(cos(x), x) calculates

∫
cos(x) dx .

(Note that SymPy does not include the constant of integration.)

To compute a definite integral, pass a tuple
(integration_variable, lower_limit, upper_limit), e.g.
integrate(exp(-x), (x, 0, oo)) calculates

∫∞
0 e−x dx .

You can pass multiple limit tuples to perform a multiple integral,
e.g. integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))
computes

∫∞
−∞

∫∞
−∞ e−x2−y2 dx dy .

Exercises: calculate:
1
∫

x cos(x) dx

Code: integrate(x*cos(x), x)

2
∫ 2π

0 sin(x) dx

Code: integrate(sin(x), (x, 0, 2*pi))

3
∫∞

1
1
x dx

Code: integrate(1/x, (x, 1, oo))
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Unevaluated objects

SymPy contains classes whose instances (so called
unevaluated objects) represent unevaluated operations,
for example:

Derivative
(its constructor takes the same arguments as diff);
Integral
(its constructor takes the same arguments as integrate);
Sum
(its constructor takes the same arguments as summation);

unevaluated objects are useful for delaying the evaluation, or
for printing purposes, for instance (execute):
der = Derivative(x**3 * y**2, x, x, y)
der displays der,
latex(der) LATEX representation of der;
der.doit() solves der.

unevaluated objects are also returned by diff, integrate,
etc. when SymPy does not know how to compute something.
For example try: integrate(x**x, x)
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Homework

1 simplify the formula x2+x
x sin2(y)+x cos2(y) ;

2 calculate limx→−∞
(

1
x ln (ex + 1)

)
;

3 find all real x such that x2 + 2 > x3 ∧
√

x + 2 > x ;
4 solve ax3 + bx2 + cx + d = 0 for x ;
5 evaluate ∂2

∂x∂y (sin (x + y) cos (xy)) to an accuracy of 30
decimal digits at point x = −1, y = 2;

6 plot both f (x) = 3x2 and ∂
∂x f (x) together in the range (0, 5);

7 plot f (x) = limn→∞
(
1 + 1

n

)nx
in the range (−1, 1);

8 evaluate
∫∞
−∞ e−x2 dx to an accuracy of 50 digits;

9 plot
∫

e−x2 dx in the range (−4, 4);
10 for volunteers: find a simple formula for the area of a triangle

with vertices at points: (0, 0), (a, b), (c, d). Next, evaluate
the formula for a = 2, b = 2, c = 4, d = 0.

Please note all the expressions you used.
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