
Python (3.x) shell as a calculator
basics of Python, its shell and mathematical modules

Piotr Beling

Uniwersytet Łódzki
(University of Łódź)

2016
last update: 2018



Basis of ipython – exercise
1 Run ipython qtconsole:

Windows with Anaconda: Start → (All) Applications →
Anaconda3 → Jupyter QTConsole
Linux: ipython3 qtconsole

2 Type: s = "I␣like␣Matlab." (and accept with Enter key)
Now s is a variable which refers to the string
"I␣like␣Matlab.".

3 Type: s. (notice a dot after s) and press Tab key.
You should see a list of methods available for s (string).

4 Choose or type replace and open bracket:
s.replace(
You should see documentation (so-called docstring) for
replace method of string.

5 Finish by putting arguments and pressing Enter:
s.replace("Matlab", "Python")

6 Type and accept by Enter: _ * 5
Underscore (_) refers to the output of the last statement.

1 / 19



Basis of ipython – exercise
1 Run ipython qtconsole:

Windows with Anaconda: Start → (All) Applications →
Anaconda3 → Jupyter QTConsole
Linux: ipython3 qtconsole

2 Type: s = "I␣like␣Matlab." (and accept with Enter key)
Now s is a variable which refers to the string
"I␣like␣Matlab.".

3 Type: s. (notice a dot after s) and press Tab key.
You should see a list of methods available for s (string).

4 Choose or type replace and open bracket:
s.replace(
You should see documentation (so-called docstring) for
replace method of string.

5 Finish by putting arguments and pressing Enter:
s.replace("Matlab", "Python")

6 Type and accept by Enter: _ * 5
Underscore (_) refers to the output of the last statement.

1 / 19



Basis of ipython – exercise
1 Run ipython qtconsole:

Windows with Anaconda: Start → (All) Applications →
Anaconda3 → Jupyter QTConsole
Linux: ipython3 qtconsole

2 Type: s = "I␣like␣Matlab." (and accept with Enter key)
Now s is a variable which refers to the string
"I␣like␣Matlab.".

3 Type: s. (notice a dot after s) and press Tab key.
You should see a list of methods available for s (string).

4 Choose or type replace and open bracket:
s.replace(
You should see documentation (so-called docstring) for
replace method of string.

5 Finish by putting arguments and pressing Enter:
s.replace("Matlab", "Python")

6 Type and accept by Enter: _ * 5
Underscore (_) refers to the output of the last statement.

1 / 19



Basis of ipython – exercise
1 Run ipython qtconsole:

Windows with Anaconda: Start → (All) Applications →
Anaconda3 → Jupyter QTConsole
Linux: ipython3 qtconsole

2 Type: s = "I␣like␣Matlab." (and accept with Enter key)
Now s is a variable which refers to the string
"I␣like␣Matlab.".

3 Type: s. (notice a dot after s) and press Tab key.
You should see a list of methods available for s (string).

4 Choose or type replace and open bracket:
s.replace(
You should see documentation (so-called docstring) for
replace method of string.

5 Finish by putting arguments and pressing Enter:
s.replace("Matlab", "Python")

6 Type and accept by Enter: _ * 5
Underscore (_) refers to the output of the last statement.

1 / 19



Basis of ipython – exercise
1 Run ipython qtconsole:

Windows with Anaconda: Start → (All) Applications →
Anaconda3 → Jupyter QTConsole
Linux: ipython3 qtconsole

2 Type: s = "I␣like␣Matlab." (and accept with Enter key)
Now s is a variable which refers to the string
"I␣like␣Matlab.".

3 Type: s. (notice a dot after s) and press Tab key.
You should see a list of methods available for s (string).

4 Choose or type replace and open bracket:
s.replace(
You should see documentation (so-called docstring) for
replace method of string.

5 Finish by putting arguments and pressing Enter:
s.replace("Matlab", "Python")

6 Type and accept by Enter: _ * 5
Underscore (_) refers to the output of the last statement.

1 / 19



Basis of ipython – exercise
1 Run ipython qtconsole:

Windows with Anaconda: Start → (All) Applications →
Anaconda3 → Jupyter QTConsole
Linux: ipython3 qtconsole

2 Type: s = "I␣like␣Matlab." (and accept with Enter key)
Now s is a variable which refers to the string
"I␣like␣Matlab.".

3 Type: s. (notice a dot after s) and press Tab key.
You should see a list of methods available for s (string).

4 Choose or type replace and open bracket:
s.replace(
You should see documentation (so-called docstring) for
replace method of string.

5 Finish by putting arguments and pressing Enter:
s.replace("Matlab", "Python")

6 Type and accept by Enter: _ * 5
Underscore (_) refers to the output of the last statement.

1 / 19



Basis of ipython – command history

One can refer to the outputs of previous statements by:
_ (one underscore) – previous output,
__ (two underscores) – next previous,
___ (three underscores) – next-next previous,
_<n> (e.g. _2) – output of the statement number n.
(Numbers of statements are displayed in brackets [].)

Up and down arrows can be used for navigation over
commands.
Exercise: find _ * 5 in history and execute it again.
You can also start typing, and then use arrows to search
through only the history items that match what you have
typed so far.
Exercise: type s and use up and down arrows.

2 / 19



Basis of ipython – command history

One can refer to the outputs of previous statements by:
_ (one underscore) – previous output,
__ (two underscores) – next previous,
___ (three underscores) – next-next previous,
_<n> (e.g. _2) – output of the statement number n.
(Numbers of statements are displayed in brackets [].)

Up and down arrows can be used for navigation over
commands.
Exercise: find _ * 5 in history and execute it again.
You can also start typing, and then use arrows to search
through only the history items that match what you have
typed so far.
Exercise: type s and use up and down arrows.

2 / 19



Basis of ipython – command history

One can refer to the outputs of previous statements by:
_ (one underscore) – previous output,
__ (two underscores) – next previous,
___ (three underscores) – next-next previous,
_<n> (e.g. _2) – output of the statement number n.
(Numbers of statements are displayed in brackets [].)

Up and down arrows can be used for navigation over
commands.
Exercise: find _ * 5 in history and execute it again.
You can also start typing, and then use arrows to search
through only the history items that match what you have
typed so far.
Exercise: type s and use up and down arrows.

2 / 19



Basis of ipython – how to get help? [1/2]

Typing ?sth, ??sth, sth? or sth?? prints detailed
information about an object, method or function sth.
Examples:
s?
s.replace?
Note that in case of using single question mark (?), very long
docstrings are snipped.
Astrix (*) can be used to construct pattern and find names
which match to it.
For instance ?s.*find* lists names in s containing find.

Exercises:
1 Display help about find method of s.

Answer: s.find?

2 List names in s beginning with is.

Answer: ?s.is*

3 / 19



Basis of ipython – how to get help? [1/2]

Typing ?sth, ??sth, sth? or sth?? prints detailed
information about an object, method or function sth.
Examples:
s?
s.replace?
Note that in case of using single question mark (?), very long
docstrings are snipped.
Astrix (*) can be used to construct pattern and find names
which match to it.
For instance ?s.*find* lists names in s containing find.

Exercises:
1 Display help about find method of s.

Answer: s.find?

2 List names in s beginning with is.

Answer: ?s.is*

3 / 19



Basis of ipython – how to get help? [1/2]

Typing ?sth, ??sth, sth? or sth?? prints detailed
information about an object, method or function sth.
Examples:
s?
s.replace?
Note that in case of using single question mark (?), very long
docstrings are snipped.
Astrix (*) can be used to construct pattern and find names
which match to it.
For instance ?s.*find* lists names in s containing find.

Exercises:
1 Display help about find method of s.

Answer: s.find?

2 List names in s beginning with is.

Answer: ?s.is*

3 / 19



Basis of ipython – how to get help? [1/2]

Typing ?sth, ??sth, sth? or sth?? prints detailed
information about an object, method or function sth.
Examples:
s?
s.replace?
Note that in case of using single question mark (?), very long
docstrings are snipped.
Astrix (*) can be used to construct pattern and find names
which match to it.
For instance ?s.*find* lists names in s containing find.

Exercises:
1 Display help about find method of s. Answer: s.find?
2 List names in s beginning with is. Answer: ?s.is*

3 / 19



Basis of ipython – how to get help? [2/2]

help(sth) displays help about module, keyword, or topic
sth. For instance help(’str’) or help(str) (quotation
marks can be omitted for built-in or already imported things).
help() runs interactive help.
Help menu includes further information.

Exercises:
1 Display help about int.

Answer: help(’int’), help(int)
or int? (only about constructor)

2 Display help about sum function.

Answer: help(’sum’), help(sum) or sum?

3 Run interactive help and read welcoming message.
Find all modules whose name or summary contains math.
Finally, return to the interpreter.

help()
modules math
quit (or just hit Enter without typing anything)

4 / 19



Basis of ipython – how to get help? [2/2]

help(sth) displays help about module, keyword, or topic
sth. For instance help(’str’) or help(str) (quotation
marks can be omitted for built-in or already imported things).
help() runs interactive help.
Help menu includes further information.

Exercises:
1 Display help about int.

Answer: help(’int’), help(int)
or int? (only about constructor)

2 Display help about sum function.

Answer: help(’sum’), help(sum) or sum?

3 Run interactive help and read welcoming message.
Find all modules whose name or summary contains math.
Finally, return to the interpreter.

help()
modules math
quit (or just hit Enter without typing anything)

4 / 19



Basis of ipython – how to get help? [2/2]

help(sth) displays help about module, keyword, or topic
sth. For instance help(’str’) or help(str) (quotation
marks can be omitted for built-in or already imported things).
help() runs interactive help.
Help menu includes further information.

Exercises:
1 Display help about int.

Answer: help(’int’), help(int)
or int? (only about constructor)

2 Display help about sum function.

Answer: help(’sum’), help(sum) or sum?

3 Run interactive help and read welcoming message.
Find all modules whose name or summary contains math.
Finally, return to the interpreter.

help()
modules math
quit (or just hit Enter without typing anything)

4 / 19



Basis of ipython – how to get help? [2/2]

help(sth) displays help about module, keyword, or topic
sth. For instance help(’str’) or help(str) (quotation
marks can be omitted for built-in or already imported things).
help() runs interactive help.
Help menu includes further information.

Exercises:
1 Display help about int.

Answer: help(’int’), help(int)
or int? (only about constructor)

2 Display help about sum function.

Answer: help(’sum’), help(sum) or sum?

3 Run interactive help and read welcoming message.
Find all modules whose name or summary contains math.
Finally, return to the interpreter.

help()
modules math
quit (or just hit Enter without typing anything)

4 / 19



Basis of ipython – how to get help? [2/2]

help(sth) displays help about module, keyword, or topic
sth. For instance help(’str’) or help(str) (quotation
marks can be omitted for built-in or already imported things).
help() runs interactive help.
Help menu includes further information.

Exercises:
1 Display help about int. Answer: help(’int’), help(int)

or int? (only about constructor)
2 Display help about sum function.

Answer: help(’sum’), help(sum) or sum?
3 Run interactive help and read welcoming message.

Find all modules whose name or summary contains math.
Finally, return to the interpreter.
help()
modules math
quit (or just hit Enter without typing anything)

4 / 19



Basis of ipython – quitting, magic commands, ...

To display a variable just enter its name or use the print
function, e.g. type s or print(s), and hit Enter.
Shell can be closed (but do not do it now!) by executing:
quit, quit(), exit or exit(), or pressing ctrl+d.
Ipython supports so-called magic commands. Their names
start with % (percent character).
Magic commands can be accessed by typing their names (Tab
key completes them) or by Magic menu.
%magic print information about the magic function system.
Please execute it now.
%time sth and %timeit sth time execution of sth (and are
examples of magic commands).
Exercise: execute and compare the outputs of:
%time s * 5
%timeit s * 5

5 / 19



Basis of ipython – quitting, magic commands, ...

To display a variable just enter its name or use the print
function, e.g. type s or print(s), and hit Enter.
Shell can be closed (but do not do it now!) by executing:
quit, quit(), exit or exit(), or pressing ctrl+d.
Ipython supports so-called magic commands. Their names
start with % (percent character).
Magic commands can be accessed by typing their names (Tab
key completes them) or by Magic menu.
%magic print information about the magic function system.
Please execute it now.
%time sth and %timeit sth time execution of sth (and are
examples of magic commands).
Exercise: execute and compare the outputs of:
%time s * 5
%timeit s * 5

5 / 19



Basis of ipython – quitting, magic commands, ...

To display a variable just enter its name or use the print
function, e.g. type s or print(s), and hit Enter.
Shell can be closed (but do not do it now!) by executing:
quit, quit(), exit or exit(), or pressing ctrl+d.
Ipython supports so-called magic commands. Their names
start with % (percent character).
Magic commands can be accessed by typing their names (Tab
key completes them) or by Magic menu.
%magic print information about the magic function system.
Please execute it now.
%time sth and %timeit sth time execution of sth (and are
examples of magic commands).
Exercise: execute and compare the outputs of:
%time s * 5
%timeit s * 5

5 / 19



Basis of ipython – quitting, magic commands, ...

To display a variable just enter its name or use the print
function, e.g. type s or print(s), and hit Enter.
Shell can be closed (but do not do it now!) by executing:
quit, quit(), exit or exit(), or pressing ctrl+d.
Ipython supports so-called magic commands. Their names
start with % (percent character).
Magic commands can be accessed by typing their names (Tab
key completes them) or by Magic menu.
%magic print information about the magic function system.
Please execute it now.
%time sth and %timeit sth time execution of sth (and are
examples of magic commands).
Exercise: execute and compare the outputs of:
%time s * 5
%timeit s * 5

5 / 19



Basis of ipython – quitting, magic commands, ...

To display a variable just enter its name or use the print
function, e.g. type s or print(s), and hit Enter.
Shell can be closed (but do not do it now!) by executing:
quit, quit(), exit or exit(), or pressing ctrl+d.
Ipython supports so-called magic commands. Their names
start with % (percent character).
Magic commands can be accessed by typing their names (Tab
key completes them) or by Magic menu.
%magic print information about the magic function system.
Please execute it now.
%time sth and %timeit sth time execution of sth (and are
examples of magic commands).
Exercise: execute and compare the outputs of:
%time s * 5
%timeit s * 5

5 / 19



Basis of ipython – quitting, magic commands, ...

To display a variable just enter its name or use the print
function, e.g. type s or print(s), and hit Enter.
Shell can be closed (but do not do it now!) by executing:
quit, quit(), exit or exit(), or pressing ctrl+d.
Ipython supports so-called magic commands. Their names
start with % (percent character).
Magic commands can be accessed by typing their names (Tab
key completes them) or by Magic menu.
%magic print information about the magic function system.
Please execute it now.
%time sth and %timeit sth time execution of sth (and are
examples of magic commands).
Exercise: execute and compare the outputs of:
%time s * 5
%timeit s * 5

5 / 19



Variables and their types in Python

Variables refer to (are labels for) objects in memory.
For instance, at the moment, s refers to the object of the
type str (string) which has a value "I␣like␣Matlab.".
Exercise: execute type(s) to display the type of s.
The same variables can be reused to store values of different
types. Exercise:
s=1
type(s)
s=1.5
type(s)
del s deletes the variable (label) s, but not object itself.
All unreferenced objects are automatically deleted by a
garbage collector. Automatic garbage collection is
time-consuming and unpredictable, but it makes program
development easier and less prone to error by relieving the
developer of manual memory management.

6 / 19



Variables and their types in Python

Variables refer to (are labels for) objects in memory.
For instance, at the moment, s refers to the object of the
type str (string) which has a value "I␣like␣Matlab.".
Exercise: execute type(s) to display the type of s.
The same variables can be reused to store values of different
types. Exercise:
s=1
type(s)
s=1.5
type(s)
del s deletes the variable (label) s, but not object itself.
All unreferenced objects are automatically deleted by a
garbage collector. Automatic garbage collection is
time-consuming and unpredictable, but it makes program
development easier and less prone to error by relieving the
developer of manual memory management.

6 / 19



Variables and their types in Python

Variables refer to (are labels for) objects in memory.
For instance, at the moment, s refers to the object of the
type str (string) which has a value "I␣like␣Matlab.".
Exercise: execute type(s) to display the type of s.
The same variables can be reused to store values of different
types. Exercise:
s=1
type(s)
s=1.5
type(s)
del s deletes the variable (label) s, but not object itself.
All unreferenced objects are automatically deleted by a
garbage collector. Automatic garbage collection is
time-consuming and unpredictable, but it makes program
development easier and less prone to error by relieving the
developer of manual memory management.

6 / 19



Variables and their types in Python

Variables refer to (are labels for) objects in memory.
For instance, at the moment, s refers to the object of the
type str (string) which has a value "I␣like␣Matlab.".
Exercise: execute type(s) to display the type of s.
The same variables can be reused to store values of different
types. Exercise:
s=1
type(s)
s=1.5
type(s)
del s deletes the variable (label) s, but not object itself.
All unreferenced objects are automatically deleted by a
garbage collector. Automatic garbage collection is
time-consuming and unpredictable, but it makes program
development easier and less prone to error by relieving the
developer of manual memory management.

6 / 19



Variables and their types in Python

Variables refer to (are labels for) objects in memory.
For instance, at the moment, s refers to the object of the
type str (string) which has a value "I␣like␣Matlab.".
Exercise: execute type(s) to display the type of s.
The same variables can be reused to store values of different
types. Exercise:
s=1
type(s)
s=1.5
type(s)
del s deletes the variable (label) s, but not object itself.
All unreferenced objects are automatically deleted by a
garbage collector. Automatic garbage collection is
time-consuming and unpredictable, but it makes program
development easier and less prone to error by relieving the
developer of manual memory management.

6 / 19



Python shell as a calculator – examples / exercises [1/3]
Execute the following expressions:
2 + 2 simple sum of two integers (of int type);
2 + 2*2 Python follows the same precedence rules for its

mathematical operators that mathematics does;
(2+2)*2 round brackets force a desired precedence;
5.6 - 2 dot (.) is used as a decimal separator;

most operators convert numeric arguments to a com-
mon type, and the result is of that type (that is why
float minus int gives float);

2e18 * 5 2e18 is a float in scientific notation, equals 2·1018;
0.1+0.2 float arithmetic is often not exact.

Calculate:
1 5− 3 · 7

Code: 5 - 3

2 3.2 + 2.8

Code: 3.2 + 2.8

3 8 · 4 · (5.1− 2.7)

Code: 8 * 4 * (5.1-2.7)

4 0.1 + 0.7

Code: 0.1+0.7

7 / 19



Python shell as a calculator – examples / exercises [1/3]
Execute the following expressions:
2 + 2 simple sum of two integers (of int type);
2 + 2*2 Python follows the same precedence rules for its

mathematical operators that mathematics does;
(2+2)*2 round brackets force a desired precedence;
5.6 - 2 dot (.) is used as a decimal separator;

most operators convert numeric arguments to a com-
mon type, and the result is of that type (that is why
float minus int gives float);

2e18 * 5 2e18 is a float in scientific notation, equals 2·1018;
0.1+0.2 float arithmetic is often not exact.

Calculate:
1 5− 3 · 7

Code: 5 - 3

2 3.2 + 2.8

Code: 3.2 + 2.8

3 8 · 4 · (5.1− 2.7)

Code: 8 * 4 * (5.1-2.7)

4 0.1 + 0.7

Code: 0.1+0.7

7 / 19



Python shell as a calculator – examples / exercises [1/3]
Execute the following expressions:
2 + 2 simple sum of two integers (of int type);
2 + 2*2 Python follows the same precedence rules for its

mathematical operators that mathematics does;
(2+2)*2 round brackets force a desired precedence;
5.6 - 2 dot (.) is used as a decimal separator;

most operators convert numeric arguments to a com-
mon type, and the result is of that type (that is why
float minus int gives float);

2e18 * 5 2e18 is a float in scientific notation, equals 2·1018;
0.1+0.2 float arithmetic is often not exact.

Calculate:
1 5− 3 · 7

Code: 5 - 3

2 3.2 + 2.8

Code: 3.2 + 2.8

3 8 · 4 · (5.1− 2.7)

Code: 8 * 4 * (5.1-2.7)

4 0.1 + 0.7

Code: 0.1+0.7

7 / 19



Python shell as a calculator – examples / exercises [1/3]
Execute the following expressions:
2 + 2 simple sum of two integers (of int type);
2 + 2*2 Python follows the same precedence rules for its

mathematical operators that mathematics does;
(2+2)*2 round brackets force a desired precedence;
5.6 - 2 dot (.) is used as a decimal separator;

most operators convert numeric arguments to a com-
mon type, and the result is of that type (that is why
float minus int gives float);

2e18 * 5 2e18 is a float in scientific notation, equals 2·1018;
0.1+0.2 float arithmetic is often not exact.

Calculate:
1 5− 3 · 7

Code: 5 - 3

2 3.2 + 2.8

Code: 3.2 + 2.8

3 8 · 4 · (5.1− 2.7)

Code: 8 * 4 * (5.1-2.7)

4 0.1 + 0.7

Code: 0.1+0.7

7 / 19



Python shell as a calculator – examples / exercises [1/3]
Execute the following expressions:
2 + 2 simple sum of two integers (of int type);
2 + 2*2 Python follows the same precedence rules for its

mathematical operators that mathematics does;
(2+2)*2 round brackets force a desired precedence;
5.6 - 2 dot (.) is used as a decimal separator;

most operators convert numeric arguments to a com-
mon type, and the result is of that type (that is why
float minus int gives float);

2e18 * 5 2e18 is a float in scientific notation, equals 2·1018;
0.1+0.2 float arithmetic is often not exact.

Calculate:
1 5− 3 · 7

Code: 5 - 3

2 3.2 + 2.8

Code: 3.2 + 2.8

3 8 · 4 · (5.1− 2.7)

Code: 8 * 4 * (5.1-2.7)

4 0.1 + 0.7

Code: 0.1+0.7

7 / 19



Python shell as a calculator – examples / exercises [1/3]
Execute the following expressions:
2 + 2 simple sum of two integers (of int type);
2 + 2*2 Python follows the same precedence rules for its

mathematical operators that mathematics does;
(2+2)*2 round brackets force a desired precedence;
5.6 - 2 dot (.) is used as a decimal separator;

most operators convert numeric arguments to a com-
mon type, and the result is of that type (that is why
float minus int gives float);

2e18 * 5 2e18 is a float in scientific notation, equals 2·1018;
0.1+0.2 float arithmetic is often not exact.

Calculate:
1 5− 3 · 7

Code: 5 - 3

2 3.2 + 2.8

Code: 3.2 + 2.8

3 8 · 4 · (5.1− 2.7)

Code: 8 * 4 * (5.1-2.7)

4 0.1 + 0.7

Code: 0.1+0.7

7 / 19



Python shell as a calculator – examples / exercises [1/3]
Execute the following expressions:
2 + 2 simple sum of two integers (of int type);
2 + 2*2 Python follows the same precedence rules for its

mathematical operators that mathematics does;
(2+2)*2 round brackets force a desired precedence;
5.6 - 2 dot (.) is used as a decimal separator;

most operators convert numeric arguments to a com-
mon type, and the result is of that type (that is why
float minus int gives float);

2e18 * 5 2e18 is a float in scientific notation, equals 2·1018;
0.1+0.2 float arithmetic is often not exact.

Calculate:
1 5− 3 · 7

Code: 5 - 3

2 3.2 + 2.8

Code: 3.2 + 2.8

3 8 · 4 · (5.1− 2.7)

Code: 8 * 4 * (5.1-2.7)

4 0.1 + 0.7

Code: 0.1+0.7

7 / 19



Python shell as a calculator – examples / exercises [1/3]
Execute the following expressions:
2 + 2 simple sum of two integers (of int type);
2 + 2*2 Python follows the same precedence rules for its

mathematical operators that mathematics does;
(2+2)*2 round brackets force a desired precedence;
5.6 - 2 dot (.) is used as a decimal separator;

most operators convert numeric arguments to a com-
mon type, and the result is of that type (that is why
float minus int gives float);

2e18 * 5 2e18 is a float in scientific notation, equals 2·1018;
0.1+0.2 float arithmetic is often not exact.

Calculate:
1 5− 3 · 7 Code: 5 - 3

2 3.2 + 2.8 Code: 3.2 + 2.8

3 8 · 4 · (5.1− 2.7) Code: 8 * 4 * (5.1-2.7)

4 0.1 + 0.7 Code: 0.1+0.7
7 / 19



Python shell as a calculator – examples / exercises [2/3]

Execute the following expressions:
5 / 3 normal division; int divided by int gives float;
5 / 0 division by 0 raises ZeroDivisionError exception;
5 // 3 b5

3c; floor division (//) gives int for ints operands;
5 % 3 remainder from the division of 5 by 3 (modulo oper-

ation); also int for ints operands;
7.2 // 3 for float and int, floor division gives integer en-

coded in float type;
7.2 % 3 also float, 1.2 since 3 · b7.2/3c+ 1.2 = 7.2;

Calculate:
1 1/3 + 0.1

Code: 1/3 + 0.1

2 2.7+4
2 − 4

Code: (2.7+4)/2 - 4

3 b11.7/3.5c

Code: 11.7 // 3.5

4 1/10 + 2/10

Code: 1/10 + 2/10

5 5− 2 · b5/2c

Code: 5-2*(5//2) or 5%2

8 / 19



Python shell as a calculator – examples / exercises [2/3]

Execute the following expressions:
5 / 3 normal division; int divided by int gives float;
5 / 0 division by 0 raises ZeroDivisionError exception;
5 // 3 b5

3c; floor division (//) gives int for ints operands;
5 % 3 remainder from the division of 5 by 3 (modulo oper-

ation); also int for ints operands;
7.2 // 3 for float and int, floor division gives integer en-

coded in float type;
7.2 % 3 also float, 1.2 since 3 · b7.2/3c+ 1.2 = 7.2;

Calculate:
1 1/3 + 0.1

Code: 1/3 + 0.1

2 2.7+4
2 − 4

Code: (2.7+4)/2 - 4

3 b11.7/3.5c

Code: 11.7 // 3.5

4 1/10 + 2/10

Code: 1/10 + 2/10

5 5− 2 · b5/2c

Code: 5-2*(5//2) or 5%2

8 / 19



Python shell as a calculator – examples / exercises [2/3]

Execute the following expressions:
5 / 3 normal division; int divided by int gives float;
5 / 0 division by 0 raises ZeroDivisionError exception;
5 // 3 b5

3c; floor division (//) gives int for ints operands;
5 % 3 remainder from the division of 5 by 3 (modulo oper-

ation); also int for ints operands;
7.2 // 3 for float and int, floor division gives integer en-

coded in float type;
7.2 % 3 also float, 1.2 since 3 · b7.2/3c+ 1.2 = 7.2;

Calculate:
1 1/3 + 0.1

Code: 1/3 + 0.1

2 2.7+4
2 − 4

Code: (2.7+4)/2 - 4

3 b11.7/3.5c

Code: 11.7 // 3.5

4 1/10 + 2/10

Code: 1/10 + 2/10

5 5− 2 · b5/2c

Code: 5-2*(5//2) or 5%2

8 / 19



Python shell as a calculator – examples / exercises [2/3]

Execute the following expressions:
5 / 3 normal division; int divided by int gives float;
5 / 0 division by 0 raises ZeroDivisionError exception;
5 // 3 b5

3c; floor division (//) gives int for ints operands;
5 % 3 remainder from the division of 5 by 3 (modulo oper-

ation); also int for ints operands;
7.2 // 3 for float and int, floor division gives integer en-

coded in float type;
7.2 % 3 also float, 1.2 since 3 · b7.2/3c+ 1.2 = 7.2;

Calculate:
1 1/3 + 0.1

Code: 1/3 + 0.1

2 2.7+4
2 − 4

Code: (2.7+4)/2 - 4

3 b11.7/3.5c

Code: 11.7 // 3.5

4 1/10 + 2/10

Code: 1/10 + 2/10

5 5− 2 · b5/2c

Code: 5-2*(5//2) or 5%2

8 / 19



Python shell as a calculator – examples / exercises [2/3]

Execute the following expressions:
5 / 3 normal division; int divided by int gives float;
5 / 0 division by 0 raises ZeroDivisionError exception;
5 // 3 b5

3c; floor division (//) gives int for ints operands;
5 % 3 remainder from the division of 5 by 3 (modulo oper-

ation); also int for ints operands;
7.2 // 3 for float and int, floor division gives integer en-

coded in float type;
7.2 % 3 also float, 1.2 since 3 · b7.2/3c+ 1.2 = 7.2;

Calculate:
1 1/3 + 0.1

Code: 1/3 + 0.1

2 2.7+4
2 − 4

Code: (2.7+4)/2 - 4

3 b11.7/3.5c

Code: 11.7 // 3.5

4 1/10 + 2/10

Code: 1/10 + 2/10

5 5− 2 · b5/2c

Code: 5-2*(5//2) or 5%2

8 / 19



Python shell as a calculator – examples / exercises [2/3]

Execute the following expressions:
5 / 3 normal division; int divided by int gives float;
5 / 0 division by 0 raises ZeroDivisionError exception;
5 // 3 b5

3c; floor division (//) gives int for ints operands;
5 % 3 remainder from the division of 5 by 3 (modulo oper-

ation); also int for ints operands;
7.2 // 3 for float and int, floor division gives integer en-

coded in float type;
7.2 % 3 also float, 1.2 since 3 · b7.2/3c+ 1.2 = 7.2;

Calculate:
1 1/3 + 0.1

Code: 1/3 + 0.1

2 2.7+4
2 − 4

Code: (2.7+4)/2 - 4

3 b11.7/3.5c

Code: 11.7 // 3.5

4 1/10 + 2/10

Code: 1/10 + 2/10

5 5− 2 · b5/2c

Code: 5-2*(5//2) or 5%2

8 / 19



Python shell as a calculator – examples / exercises [2/3]

Execute the following expressions:
5 / 3 normal division; int divided by int gives float;
5 / 0 division by 0 raises ZeroDivisionError exception;
5 // 3 b5

3c; floor division (//) gives int for ints operands;
5 % 3 remainder from the division of 5 by 3 (modulo oper-

ation); also int for ints operands;
7.2 // 3 for float and int, floor division gives integer en-

coded in float type;
7.2 % 3 also float, 1.2 since 3 · b7.2/3c+ 1.2 = 7.2;

Calculate:
1 1/3 + 0.1

Code: 1/3 + 0.1

2 2.7+4
2 − 4

Code: (2.7+4)/2 - 4

3 b11.7/3.5c

Code: 11.7 // 3.5

4 1/10 + 2/10

Code: 1/10 + 2/10

5 5− 2 · b5/2c

Code: 5-2*(5//2) or 5%2

8 / 19



Python shell as a calculator – examples / exercises [2/3]

Execute the following expressions:
5 / 3 normal division; int divided by int gives float;
5 / 0 division by 0 raises ZeroDivisionError exception;
5 // 3 b5

3c; floor division (//) gives int for ints operands;
5 % 3 remainder from the division of 5 by 3 (modulo oper-

ation); also int for ints operands;
7.2 // 3 for float and int, floor division gives integer en-

coded in float type;
7.2 % 3 also float, 1.2 since 3 · b7.2/3c+ 1.2 = 7.2;

Calculate:
1 1/3 + 0.1 Code: 1/3 + 0.1

2 2.7+4
2 − 4 Code: (2.7+4)/2 - 4

3 b11.7/3.5c Code: 11.7 // 3.5

4 1/10 + 2/10 Code: 1/10 + 2/10

5 5− 2 · b5/2c Code: 5-2*(5//2) or 5%2
8 / 19



Python shell as a calculator – examples / exercises [3/3]

Execute the following expressions:
7 ** 82 7 to the power of 82 can be calculated precisely

due to support for arbitrary-precision integers;
pow(7,82) another notation for 7**82;
7.0 ** 82 float is not of arbitrary-precision;
2 ** (1/2) square root of 2 (

√
2); float since 1/2 is float;

2 ** -3 also negative exponent yields to float result;
same as 1/(2**3);

abs(-3.6) abs calculates absolute value and usually pre-
serves the type of the argument.

Calculate:
1 | − 953|

Code: abs(-9 ** 53)

2 3√5

Code: 5 ** (1/3)

3 2.1−5 + 1/3

Code: 2.1**-5 + 1/3

4 |73+29
32−76 |

b14/3c

Code: abs((73+29)/(32-76))**(14//3)

9 / 19



Python shell as a calculator – examples / exercises [3/3]

Execute the following expressions:
7 ** 82 7 to the power of 82 can be calculated precisely

due to support for arbitrary-precision integers;
pow(7,82) another notation for 7**82;
7.0 ** 82 float is not of arbitrary-precision;
2 ** (1/2) square root of 2 (

√
2); float since 1/2 is float;

2 ** -3 also negative exponent yields to float result;
same as 1/(2**3);

abs(-3.6) abs calculates absolute value and usually pre-
serves the type of the argument.

Calculate:
1 | − 953|

Code: abs(-9 ** 53)

2 3√5

Code: 5 ** (1/3)

3 2.1−5 + 1/3

Code: 2.1**-5 + 1/3

4 |73+29
32−76 |

b14/3c

Code: abs((73+29)/(32-76))**(14//3)

9 / 19



Python shell as a calculator – examples / exercises [3/3]

Execute the following expressions:
7 ** 82 7 to the power of 82 can be calculated precisely

due to support for arbitrary-precision integers;
pow(7,82) another notation for 7**82;
7.0 ** 82 float is not of arbitrary-precision;
2 ** (1/2) square root of 2 (

√
2); float since 1/2 is float;

2 ** -3 also negative exponent yields to float result;
same as 1/(2**3);

abs(-3.6) abs calculates absolute value and usually pre-
serves the type of the argument.

Calculate:
1 | − 953|

Code: abs(-9 ** 53)

2 3√5

Code: 5 ** (1/3)

3 2.1−5 + 1/3

Code: 2.1**-5 + 1/3

4 |73+29
32−76 |

b14/3c

Code: abs((73+29)/(32-76))**(14//3)

9 / 19



Python shell as a calculator – examples / exercises [3/3]

Execute the following expressions:
7 ** 82 7 to the power of 82 can be calculated precisely

due to support for arbitrary-precision integers;
pow(7,82) another notation for 7**82;
7.0 ** 82 float is not of arbitrary-precision;
2 ** (1/2) square root of 2 (

√
2); float since 1/2 is float;

2 ** -3 also negative exponent yields to float result;
same as 1/(2**3);

abs(-3.6) abs calculates absolute value and usually pre-
serves the type of the argument.

Calculate:
1 | − 953|

Code: abs(-9 ** 53)

2 3√5

Code: 5 ** (1/3)

3 2.1−5 + 1/3

Code: 2.1**-5 + 1/3

4 |73+29
32−76 |

b14/3c

Code: abs((73+29)/(32-76))**(14//3)

9 / 19



Python shell as a calculator – examples / exercises [3/3]

Execute the following expressions:
7 ** 82 7 to the power of 82 can be calculated precisely

due to support for arbitrary-precision integers;
pow(7,82) another notation for 7**82;
7.0 ** 82 float is not of arbitrary-precision;
2 ** (1/2) square root of 2 (

√
2); float since 1/2 is float;

2 ** -3 also negative exponent yields to float result;
same as 1/(2**3);

abs(-3.6) abs calculates absolute value and usually pre-
serves the type of the argument.

Calculate:
1 | − 953|

Code: abs(-9 ** 53)

2 3√5

Code: 5 ** (1/3)

3 2.1−5 + 1/3

Code: 2.1**-5 + 1/3

4 |73+29
32−76 |

b14/3c

Code: abs((73+29)/(32-76))**(14//3)

9 / 19



Python shell as a calculator – examples / exercises [3/3]

Execute the following expressions:
7 ** 82 7 to the power of 82 can be calculated precisely

due to support for arbitrary-precision integers;
pow(7,82) another notation for 7**82;
7.0 ** 82 float is not of arbitrary-precision;
2 ** (1/2) square root of 2 (

√
2); float since 1/2 is float;

2 ** -3 also negative exponent yields to float result;
same as 1/(2**3);

abs(-3.6) abs calculates absolute value and usually pre-
serves the type of the argument.

Calculate:
1 | − 953|

Code: abs(-9 ** 53)

2 3√5

Code: 5 ** (1/3)

3 2.1−5 + 1/3

Code: 2.1**-5 + 1/3

4 |73+29
32−76 |

b14/3c

Code: abs((73+29)/(32-76))**(14//3)

9 / 19



Python shell as a calculator – examples / exercises [3/3]

Execute the following expressions:
7 ** 82 7 to the power of 82 can be calculated precisely

due to support for arbitrary-precision integers;
pow(7,82) another notation for 7**82;
7.0 ** 82 float is not of arbitrary-precision;
2 ** (1/2) square root of 2 (

√
2); float since 1/2 is float;

2 ** -3 also negative exponent yields to float result;
same as 1/(2**3);

abs(-3.6) abs calculates absolute value and usually pre-
serves the type of the argument.

Calculate:
1 | − 953|

Code: abs(-9 ** 53)

2 3√5

Code: 5 ** (1/3)

3 2.1−5 + 1/3

Code: 2.1**-5 + 1/3

4 |73+29
32−76 |

b14/3c

Code: abs((73+29)/(32-76))**(14//3)

9 / 19



Python shell as a calculator – examples / exercises [3/3]

Execute the following expressions:
7 ** 82 7 to the power of 82 can be calculated precisely

due to support for arbitrary-precision integers;
pow(7,82) another notation for 7**82;
7.0 ** 82 float is not of arbitrary-precision;
2 ** (1/2) square root of 2 (

√
2); float since 1/2 is float;

2 ** -3 also negative exponent yields to float result;
same as 1/(2**3);

abs(-3.6) abs calculates absolute value and usually pre-
serves the type of the argument.

Calculate:
1 | − 953| Code: abs(-9 ** 53)

2 3√5 Code: 5 ** (1/3)

3 2.1−5 + 1/3 Code: 2.1**-5 + 1/3

4 |73+29
32−76 |

b14/3c Code: abs((73+29)/(32-76))**(14//3)

9 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100

Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100

Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100

Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100

Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100

Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100

Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100

Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100

Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100

Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100

Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Comparison (relational) operators

Examples:
2 * 2 == 4 is True;
3 != 3 is False;
1 < 2 is True;
5 > 5 is False;
5 >= 5 is True;
0 < 3 < 5 is True;
5 >= 3 > 8 is False;
9 == 9 > 1 is True;
3 = 3 throws

SyntaxError:
can’t assign to
literal (to 3).

Exercise: check if 37 ≥ 73 > 100
Code: 3**7 >= 7**3 > 100

Comparison operators:
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
is is the same (object)

Do not confuse:

assignment operator =
with equality check ==

10 / 19



Complex numbers – examples / exercises

Python supports computation with complex numbers.
Execute the following expressions:
a = 1+2j j represents the imaginary unit (

√
−1);

type(a) type of a is complex;
b = complex(3, 1) same as b = 3+1j;
a + b sum of complexes is also complex;
a + 2 complex plus int gives complex;
a.real real part is of the type float;
a.imag imaginary part, also float.

Calculate:
1 a3 + 2/b

Code: a**3 + 2/b

2 j2

Code: 1j**2

3 a+b
2 − 5j

Code: (a+b)/2 - 5j

4 Re(a − b) · 3, where Re(x) denotes a real part of x

Code: (a-b).real * 3

11 / 19



Complex numbers – examples / exercises

Python supports computation with complex numbers.
Execute the following expressions:
a = 1+2j j represents the imaginary unit (

√
−1);

type(a) type of a is complex;
b = complex(3, 1) same as b = 3+1j;
a + b sum of complexes is also complex;
a + 2 complex plus int gives complex;
a.real real part is of the type float;
a.imag imaginary part, also float.

Calculate:
1 a3 + 2/b

Code: a**3 + 2/b

2 j2

Code: 1j**2

3 a+b
2 − 5j

Code: (a+b)/2 - 5j

4 Re(a − b) · 3, where Re(x) denotes a real part of x

Code: (a-b).real * 3

11 / 19



Complex numbers – examples / exercises

Python supports computation with complex numbers.
Execute the following expressions:
a = 1+2j j represents the imaginary unit (

√
−1);

type(a) type of a is complex;
b = complex(3, 1) same as b = 3+1j;
a + b sum of complexes is also complex;
a + 2 complex plus int gives complex;
a.real real part is of the type float;
a.imag imaginary part, also float.

Calculate:
1 a3 + 2/b

Code: a**3 + 2/b

2 j2

Code: 1j**2

3 a+b
2 − 5j

Code: (a+b)/2 - 5j

4 Re(a − b) · 3, where Re(x) denotes a real part of x

Code: (a-b).real * 3

11 / 19



Complex numbers – examples / exercises

Python supports computation with complex numbers.
Execute the following expressions:
a = 1+2j j represents the imaginary unit (

√
−1);

type(a) type of a is complex;
b = complex(3, 1) same as b = 3+1j;
a + b sum of complexes is also complex;
a + 2 complex plus int gives complex;
a.real real part is of the type float;
a.imag imaginary part, also float.

Calculate:
1 a3 + 2/b

Code: a**3 + 2/b

2 j2

Code: 1j**2

3 a+b
2 − 5j

Code: (a+b)/2 - 5j

4 Re(a − b) · 3, where Re(x) denotes a real part of x

Code: (a-b).real * 3

11 / 19



Complex numbers – examples / exercises

Python supports computation with complex numbers.
Execute the following expressions:
a = 1+2j j represents the imaginary unit (

√
−1);

type(a) type of a is complex;
b = complex(3, 1) same as b = 3+1j;
a + b sum of complexes is also complex;
a + 2 complex plus int gives complex;
a.real real part is of the type float;
a.imag imaginary part, also float.

Calculate:
1 a3 + 2/b

Code: a**3 + 2/b

2 j2

Code: 1j**2

3 a+b
2 − 5j

Code: (a+b)/2 - 5j

4 Re(a − b) · 3, where Re(x) denotes a real part of x

Code: (a-b).real * 3

11 / 19



Complex numbers – examples / exercises

Python supports computation with complex numbers.
Execute the following expressions:
a = 1+2j j represents the imaginary unit (

√
−1);

type(a) type of a is complex;
b = complex(3, 1) same as b = 3+1j;
a + b sum of complexes is also complex;
a + 2 complex plus int gives complex;
a.real real part is of the type float;
a.imag imaginary part, also float.

Calculate:
1 a3 + 2/b

Code: a**3 + 2/b

2 j2

Code: 1j**2

3 a+b
2 − 5j

Code: (a+b)/2 - 5j

4 Re(a − b) · 3, where Re(x) denotes a real part of x

Code: (a-b).real * 3

11 / 19



Complex numbers – examples / exercises

Python supports computation with complex numbers.
Execute the following expressions:
a = 1+2j j represents the imaginary unit (

√
−1);

type(a) type of a is complex;
b = complex(3, 1) same as b = 3+1j;
a + b sum of complexes is also complex;
a + 2 complex plus int gives complex;
a.real real part is of the type float;
a.imag imaginary part, also float.

Calculate:
1 a3 + 2/b

Code: a**3 + 2/b

2 j2

Code: 1j**2

3 a+b
2 − 5j

Code: (a+b)/2 - 5j

4 Re(a − b) · 3, where Re(x) denotes a real part of x

Code: (a-b).real * 3

11 / 19



Complex numbers – examples / exercises

Python supports computation with complex numbers.
Execute the following expressions:
a = 1+2j j represents the imaginary unit (

√
−1);

type(a) type of a is complex;
b = complex(3, 1) same as b = 3+1j;
a + b sum of complexes is also complex;
a + 2 complex plus int gives complex;
a.real real part is of the type float;
a.imag imaginary part, also float.

Calculate:
1 a3 + 2/b

Code: a**3 + 2/b

2 j2

Code: 1j**2

3 a+b
2 − 5j

Code: (a+b)/2 - 5j

4 Re(a − b) · 3, where Re(x) denotes a real part of x

Code: (a-b).real * 3

11 / 19



Complex numbers – examples / exercises

Python supports computation with complex numbers.
Execute the following expressions:
a = 1+2j j represents the imaginary unit (

√
−1);

type(a) type of a is complex;
b = complex(3, 1) same as b = 3+1j;
a + b sum of complexes is also complex;
a + 2 complex plus int gives complex;
a.real real part is of the type float;
a.imag imaginary part, also float.

Calculate:
1 a3 + 2/b

Code: a**3 + 2/b

2 j2

Code: 1j**2

3 a+b
2 − 5j

Code: (a+b)/2 - 5j

4 Re(a − b) · 3, where Re(x) denotes a real part of x

Code: (a-b).real * 3

11 / 19



Complex numbers – examples / exercises

Python supports computation with complex numbers.
Execute the following expressions:
a = 1+2j j represents the imaginary unit (

√
−1);

type(a) type of a is complex;
b = complex(3, 1) same as b = 3+1j;
a + b sum of complexes is also complex;
a + 2 complex plus int gives complex;
a.real real part is of the type float;
a.imag imaginary part, also float.

Calculate:
1 a3 + 2/b Code: a**3 + 2/b

2 j2 Code: 1j**2
3 a+b

2 − 5j Code: (a+b)/2 - 5j

4 Re(a − b) · 3, where Re(x) denotes a real part of x
Code: (a-b).real * 3

11 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)

2 How many decimal digits does 9999 have? (hint: len(s)
returns the length of the string s)

Code: len(str(99**99))

12 / 19



Conversions between types
Execute the following expressions:
str(57) int to str conversion;
int(2.83) float to int; discards non-integer digits;
round(2.83) float rounded to the nearest int;
round(2.83, 1) rounds the number to one decimal place,

without changing its (float) type;
complex(’1+2j’) str to complex conversion;
float(’-2.6’) str to float conversion;
float(’1.6e8’) scientific notation: 1.6e8 means 1.6 · 108;
int(’-123’) str to int conversion;
int(’101’, 2) binary (base 2) number as str, to int;
bin(18) int to str in a binary system.

Exercises:
1 add binary numbers 1012 + 10112.

Code: int(’101’, 2) + int(’1011’, 2)
2 How many decimal digits does 9999 have? (hint: len(s)

returns the length of the string s) Code: len(str(99**99))
12 / 19



Built-in numeric types – summary

int – arbitrary-precision integer
float – rational number in binary floating point
representation (usually according to IEEE-754 “double
precision” standard)
complex – complex number represented by two floats

Remark 1
Thanks to reasonable selection of result types by operations,
developer usually does not have to care about types they use.

Remark 2
Usually we use desired_type(something) to convert
something to desired_type.

13 / 19



Built-in numeric types – summary

int – arbitrary-precision integer
float – rational number in binary floating point
representation (usually according to IEEE-754 “double
precision” standard)
complex – complex number represented by two floats

Remark 1
Thanks to reasonable selection of result types by operations,
developer usually does not have to care about types they use.

Remark 2
Usually we use desired_type(something) to convert
something to desired_type.

13 / 19



Built-in numeric types – summary

int – arbitrary-precision integer
float – rational number in binary floating point
representation (usually according to IEEE-754 “double
precision” standard)
complex – complex number represented by two floats

Remark 1
Thanks to reasonable selection of result types by operations,
developer usually does not have to care about types they use.

Remark 2
Usually we use desired_type(something) to convert
something to desired_type.

13 / 19



Built-in numeric types – summary

int – arbitrary-precision integer
float – rational number in binary floating point
representation (usually according to IEEE-754 “double
precision” standard)
complex – complex number represented by two floats

Remark 1
Thanks to reasonable selection of result types by operations,
developer usually does not have to care about types they use.

Remark 2
Usually we use desired_type(something) to convert
something to desired_type.

13 / 19



Built-in numeric types – summary

int – arbitrary-precision integer
float – rational number in binary floating point
representation (usually according to IEEE-754 “double
precision” standard)
complex – complex number represented by two floats

Remark 1
Thanks to reasonable selection of result types by operations,
developer usually does not have to care about types they use.

Remark 2
Usually we use desired_type(something) to convert
something to desired_type.

13 / 19



The math module – additional mathematical functions

The math module provides access to additional mathematical
functions.
Exercise: type help(’math’) to find out what functions are
available.
The functions included in math module cannot be used with
complex numbers.
Use the functions of the same name from the cmath module if
you require support for complex numbers.
Exercise: take a look at help(’cmath’).

14 / 19



The math module – additional mathematical functions

The math module provides access to additional mathematical
functions.
Exercise: type help(’math’) to find out what functions are
available.
The functions included in math module cannot be used with
complex numbers.
Use the functions of the same name from the cmath module if
you require support for complex numbers.
Exercise: take a look at help(’cmath’).

14 / 19



The math module – additional mathematical functions

The math module provides access to additional mathematical
functions.
Exercise: type help(’math’) to find out what functions are
available.
The functions included in math module cannot be used with
complex numbers.
Use the functions of the same name from the cmath module if
you require support for complex numbers.
Exercise: take a look at help(’cmath’).

14 / 19



The math module – additional mathematical functions

The math module provides access to additional mathematical
functions.
Exercise: type help(’math’) to find out what functions are
available.
The functions included in math module cannot be used with
complex numbers.
Use the functions of the same name from the cmath module if
you require support for complex numbers.
Exercise: take a look at help(’cmath’).

14 / 19



Importing module

In order to use any module, you have to import it first, e.g.:
import math
imports the whole math module. After that, you can type
math.sth to use sth from the module, e.g: math.sin(0)
import math as m
is similar, but shorter m prefix can be used, e.g. m.sin(0)
from math import sin, cos
imports particular names (sin and cos) into the current
namespace, which allows for using them without any prefix,
e.g.: sin(0)
from math import *
imports all names from the math module into the current
namespace. Everything can be used without any prefix.
from math import sin as s
imports sin and makes it accessible as s, e.g. s(0)

15 / 19



Importing module

In order to use any module, you have to import it first, e.g.:
import math
imports the whole math module. After that, you can type
math.sth to use sth from the module, e.g: math.sin(0)
import math as m
is similar, but shorter m prefix can be used, e.g. m.sin(0)
from math import sin, cos
imports particular names (sin and cos) into the current
namespace, which allows for using them without any prefix,
e.g.: sin(0)
from math import *
imports all names from the math module into the current
namespace. Everything can be used without any prefix.
from math import sin as s
imports sin and makes it accessible as s, e.g. s(0)

15 / 19



Importing module

In order to use any module, you have to import it first, e.g.:
import math
imports the whole math module. After that, you can type
math.sth to use sth from the module, e.g: math.sin(0)
import math as m
is similar, but shorter m prefix can be used, e.g. m.sin(0)
from math import sin, cos
imports particular names (sin and cos) into the current
namespace, which allows for using them without any prefix,
e.g.: sin(0)
from math import *
imports all names from the math module into the current
namespace. Everything can be used without any prefix.
from math import sin as s
imports sin and makes it accessible as s, e.g. s(0)

15 / 19



Importing module

In order to use any module, you have to import it first, e.g.:
import math
imports the whole math module. After that, you can type
math.sth to use sth from the module, e.g: math.sin(0)
import math as m
is similar, but shorter m prefix can be used, e.g. m.sin(0)
from math import sin, cos
imports particular names (sin and cos) into the current
namespace, which allows for using them without any prefix,
e.g.: sin(0)
from math import *
imports all names from the math module into the current
namespace. Everything can be used without any prefix.
from math import sin as s
imports sin and makes it accessible as s, e.g. s(0)

15 / 19



Importing module

In order to use any module, you have to import it first, e.g.:
import math
imports the whole math module. After that, you can type
math.sth to use sth from the module, e.g: math.sin(0)
import math as m
is similar, but shorter m prefix can be used, e.g. m.sin(0)
from math import sin, cos
imports particular names (sin and cos) into the current
namespace, which allows for using them without any prefix,
e.g.: sin(0)
from math import *
imports all names from the math module into the current
namespace. Everything can be used without any prefix.
from math import sin as s
imports sin and makes it accessible as s, e.g. s(0)

15 / 19



Using the math module – exercises
Calculate:

after import math:

1 cos2(π/3)

math.cos(math.pi/3)**2

2 d5 · log2(20)e (where dxe denotes the ceiling of x)

math.ceil(5 * math.log2(20))

3 30!

math.factorial(30)

4 e15.5

math.e ** 15.5 or (better) math.exp(15.5)

5 check if 0.1 + 0.2 equals 0.3 (hint: due to float inaccuracy,
you should only check if the numbers are close to each other)

math.isclose(0.1+0.2, 0.3)
Note that 0.1+0.2 == 0.3 gives False!

Tip
After import math you can type math. and press tab key to see
list of symbols included into the math module.

16 / 19



Using the math module – exercises
Calculate: after import math:

1 cos2(π/3)
math.cos(math.pi/3)**2

2 d5 · log2(20)e (where dxe denotes the ceiling of x)
math.ceil(5 * math.log2(20))

3 30!
math.factorial(30)

4 e15.5

math.e ** 15.5 or (better) math.exp(15.5)
5 check if 0.1 + 0.2 equals 0.3 (hint: due to float inaccuracy,

you should only check if the numbers are close to each other)
math.isclose(0.1+0.2, 0.3)
Note that 0.1+0.2 == 0.3 gives False!

Tip
After import math you can type math. and press tab key to see
list of symbols included into the math module.

16 / 19



Using variables – an example and an exercise

Example: The following code calculates |2b sin5(a + b) + a+b
b−a |,

where a = 3
√
2.1, b = 2 cos3(π7 ):

import math
a = 3 * math.sqrt(2.1)
b = 2 * math.cos(math.pi/7)**3
abs(2*b*math.sin(a+b)**5 + (a+b)/(b-a))
The final result: 2.0715515986265305

Exercise: calculate ac sin2(ab) + b c
a+c c cosb(a)− bc, where

a = π
2 , b = sin2(π4 ), c = e3.

import math
a = math.pi / 2
b = math.sin(math.pi / 4) ** 2
c = math.exp(3)
a*c*math.sin(a*b)**2 + c//(a+c)*math.cos(a)**b - b*c

The final result: 5.73237534872939

17 / 19



Using variables – an example and an exercise

Example: The following code calculates |2b sin5(a + b) + a+b
b−a |,

where a = 3
√
2.1, b = 2 cos3(π7 ):

import math
a = 3 * math.sqrt(2.1)
b = 2 * math.cos(math.pi/7)**3
abs(2*b*math.sin(a+b)**5 + (a+b)/(b-a))
The final result: 2.0715515986265305

Exercise: calculate ac sin2(ab) + b c
a+c c cosb(a)− bc, where

a = π
2 , b = sin2(π4 ), c = e3.

import math
a = math.pi / 2
b = math.sin(math.pi / 4) ** 2
c = math.exp(3)
a*c*math.sin(a*b)**2 + c//(a+c)*math.cos(a)**b - b*c

The final result: 5.73237534872939

17 / 19



Using variables – an example and an exercise

Example: The following code calculates |2b sin5(a + b) + a+b
b−a |,

where a = 3
√
2.1, b = 2 cos3(π7 ):

import math
a = 3 * math.sqrt(2.1)
b = 2 * math.cos(math.pi/7)**3
abs(2*b*math.sin(a+b)**5 + (a+b)/(b-a))
The final result: 2.0715515986265305

Exercise: calculate ac sin2(ab) + b c
a+c c cosb(a)− bc, where

a = π
2 , b = sin2(π4 ), c = e3.

import math
a = math.pi / 2
b = math.sin(math.pi / 4) ** 2
c = math.exp(3)
a*c*math.sin(a*b)**2 + c//(a+c)*math.cos(a)**b - b*c
The final result: 5.73237534872939

17 / 19



Homework

Display help about the statistics module.
Calculate:

1 2 5
√
7 sin(π/2) + cos(0)/3− log2(18);

2 the number of decimal digits of (30!)11;
3 greatest common divisor of 60! and 8120;
4 the product of ternary numbers: 20213 · 102123

5 b tanc(2.1a)/3eb − cos(a + c), where a = π
7 , b = e2, c = 3

π ;
6 e2j +

√
−5, where j is the imaginary unit.

(Hint: use the cmath module.)

Measure the time which Python needs to solve the last task (to
calculate e2j +

√
−5).

Please note all the expressions you used.

18 / 19



Bibliography

IPython Documentation available on
http://ipython.readthedocs.io/en/stable/
Official Python documentation available on
https://docs.python.org/3/, modules: math, cmath

19 / 19

http://ipython.readthedocs.io/en/stable/
https://docs.python.org/3/

	Basis of ipython qtconsole
	Variables and their types in Python
	Python shell as a calculator
	The math module
	Using variables
	Homework
	Bibliography

