
SymPy
symbolic mathematics in Python (3.x)

Piotr Beling

Uniwersytet Łódzki
(University of Łódź)

2016

This presentation is based on and cites vast fragments of the
official tutorial authored by the SymPy Development Team and
available on http://docs.sympy.org.

http://docs.sympy.org

Run ipython qtconsole and import SymPy

Today we will work in a python shell and we will use the sympy
module.

Please run ipython qtconsole:
Windows with Anaconda: Start → (All) Applications →
Anaconda3 → Jupyter QTConsole
Linux: ipython3 qtconsole

Import the whole sympy module into the current namespace:
from sympy import *

And initialize the best SymPy pretty-printer for your environment,
to get pretty printing of SymPy expressions:
init_printing()

1 / 17

About SymPy and Symbolic Computation

SymPy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system (CAS);
symbolic computation deals with the computation of
mathematical objects symbolically;
objects (like

√
2) are represented exactly, not approximately,

and mathematical expressions with unevaluated variables
(like x) are left in symbolic form.

Example: execute:
import math imports the math module;
math.sqrt(9)

√
9 calculated exactly by the math module;

sqrt(9) similar to the above, but calculated by SymPy;
math.sqrt(8) approximation of

√
8 calculated by the math

module;
√
8 is an irrational number and cannot

be represented exactly by a finite decimal;
sqrt(8) SymPy gives accurate, symbolic result; symbol-

ically simplified:
√
8 =
√
4 · 2 = 2

√
2.

2 / 17

About SymPy and Symbolic Computation

SymPy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system (CAS);
symbolic computation deals with the computation of
mathematical objects symbolically;
objects (like

√
2) are represented exactly, not approximately,

and mathematical expressions with unevaluated variables
(like x) are left in symbolic form.

Example: execute:
import math imports the math module;
math.sqrt(9)

√
9 calculated exactly by the math module;

sqrt(9) similar to the above, but calculated by SymPy;
math.sqrt(8) approximation of

√
8 calculated by the math

module;
√
8 is an irrational number and cannot

be represented exactly by a finite decimal;
sqrt(8) SymPy gives accurate, symbolic result; symbol-

ically simplified:
√
8 =
√
4 · 2 = 2

√
2.

2 / 17

About SymPy and Symbolic Computation

SymPy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system (CAS);
symbolic computation deals with the computation of
mathematical objects symbolically;
objects (like

√
2) are represented exactly, not approximately,

and mathematical expressions with unevaluated variables
(like x) are left in symbolic form.

Example: execute:
import math imports the math module;
math.sqrt(9)

√
9 calculated exactly by the math module;

sqrt(9) similar to the above, but calculated by SymPy;
math.sqrt(8) approximation of

√
8 calculated by the math

module;
√
8 is an irrational number and cannot

be represented exactly by a finite decimal;
sqrt(8) SymPy gives accurate, symbolic result; symbol-

ically simplified:
√
8 =
√
4 · 2 = 2

√
2.

2 / 17

About SymPy and Symbolic Computation

SymPy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system (CAS);
symbolic computation deals with the computation of
mathematical objects symbolically;
objects (like

√
2) are represented exactly, not approximately,

and mathematical expressions with unevaluated variables
(like x) are left in symbolic form.

Example: execute:
import math imports the math module;
math.sqrt(9)

√
9 calculated exactly by the math module;

sqrt(9) similar to the above, but calculated by SymPy;
math.sqrt(8) approximation of

√
8 calculated by the math

module;
√
8 is an irrational number and cannot

be represented exactly by a finite decimal;
sqrt(8) SymPy gives accurate, symbolic result; symbol-

ically simplified:
√
8 =
√
4 · 2 = 2

√
2.

2 / 17

About SymPy and Symbolic Computation

SymPy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system (CAS);
symbolic computation deals with the computation of
mathematical objects symbolically;
objects (like

√
2) are represented exactly, not approximately,

and mathematical expressions with unevaluated variables
(like x) are left in symbolic form.

Example: execute:
import math imports the math module;
math.sqrt(9)

√
9 calculated exactly by the math module;

sqrt(9) similar to the above, but calculated by SymPy;
math.sqrt(8) approximation of

√
8 calculated by the math

module;
√
8 is an irrational number and cannot

be represented exactly by a finite decimal;
sqrt(8) SymPy gives accurate, symbolic result; symbol-

ically simplified:
√
8 =
√
4 · 2 = 2

√
2.

2 / 17

About SymPy and Symbolic Computation

SymPy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system (CAS);
symbolic computation deals with the computation of
mathematical objects symbolically;
objects (like

√
2) are represented exactly, not approximately,

and mathematical expressions with unevaluated variables
(like x) are left in symbolic form.

Example: execute:
import math imports the math module;
math.sqrt(9)

√
9 calculated exactly by the math module;

sqrt(9) similar to the above, but calculated by SymPy;
math.sqrt(8) approximation of

√
8 calculated by the math

module;
√
8 is an irrational number and cannot

be represented exactly by a finite decimal;
sqrt(8) SymPy gives accurate, symbolic result; symbol-

ically simplified:
√
8 =
√
4 · 2 = 2

√
2.

2 / 17

About SymPy and Symbolic Computation

SymPy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system (CAS);
symbolic computation deals with the computation of
mathematical objects symbolically;
objects (like

√
2) are represented exactly, not approximately,

and mathematical expressions with unevaluated variables
(like x) are left in symbolic form.

Example: execute:
import math imports the math module;
math.sqrt(9)

√
9 calculated exactly by the math module;

sqrt(9) similar to the above, but calculated by SymPy;
math.sqrt(8) approximation of

√
8 calculated by the math

module;
√
8 is an irrational number and cannot

be represented exactly by a finite decimal;
sqrt(8) SymPy gives accurate, symbolic result; symbol-

ically simplified:
√
8 =
√
4 · 2 = 2

√
2.

2 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.

z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Variables, symbols and expressions – basics
Variables (symbols) in SymPy must be defined before use.
This can be done by the symbols, the var, or the S function.
Example: execute:
x,y = symbols(’x,y’) defines 2 symbols and assigns their

objects to the Python variables;
expr = x + 2*y defines a symbolic expression;
expr displays it;
expr + 1 gives x + 2y + 1;
expr - x x and the −x canceled each other,
x*expr but only obvious simplifications are

performed automatically,
expand(x*expr) e.g. the expansion must be forced,
factor(x**2 + 2*x*y) and the polynomial factorization too.

Exercise: define the additional z symbol and express
(x + y)(x + z)3 − x4 in the expanded form.
z = symbols(’z’)
expand((x+y) * (x+z)**3 - x**4)

3 / 17

Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17

Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17

Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17

Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17

Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17

Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17

Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)

Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17

Simplification of mathematical expressions

SymPy has dozens of functions (like expand or factor) to
perform various kinds of simplification;
there is also one general function called simplify that
attempts to apply all of these functions in an intelligent way
to arrive at the simplest form of an expression. Try:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
(sin(x)**2 + cos(x)**2).simplify()

Many operations in SymPy are available (with the same names) as
both: stand-alone functions and methods of expressions.

simplify uses heuristics to determine the simplest result;
however “simplest” is not a well-defined term and sometimes
the desired form needs to be indicated explicitly, e.g. compare
simplify(x**2+2*x+1) with factor(x**2+2*x+1);

Exercise: simplify the expression sin(x) cos(y) + cos(x) sin(y)
Code: simplify(sin(x)*cos(y) + cos(x)*sin(y))

4 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)

cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Test symbolic expressions for equality
In SymPy, == represents exact structural equality testing, e.g:
2*x==2*x is True, as expressions are identical, but a==b is False
for a = (x + 1)**2 and b = x**2 + 2*x + 1 (check!).
The best ways to check if a = b in the mathematical sense are:

simplify(a-b)==0 simplifies a − b, and sees if it goes to 0;
simplify(Eq(a,b)) simplifies the symbolic equalities of a
and b (Eq(a,b)), which may lead to a boolean value;
a.equals(b) tries more techniques (e.g. it can evaluate and
compare a with b numerically at random points) and returns
True if a = b, False if a 6= b, or None if it cannot decide.

Note that all the methods above work well for most common
expressions (give True for our a and b), but are not perfect.
It is proven that it is impossible to determine if two symbolic
expressions are identically equal in general.
Exercise: check if cos(2x) = cos2(x)− sin2(x)
cos(2*x).equals(cos(x)**2 - sin(x)**2)

5 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Substitution

Substitution replaces all instances of something in an expression
with something else. It is done using the subs method, e.g.
a = cos(x)+1 constructs the expression a;
a.subs(x, y) gives the copy of a with x replaced by y;
a a still has x; SymPy objects are immutable;
a.subs(1, 2) = cos(x) + 2; substitutes 2 for 1;
a.subs(x, 0) evaluates a at the point x = 0; cos(0) + 1 = 2;
a.subs(x, 1) cos(1) is left unevaluated, as it is irrational.

To perform multiple substitutions at once, pass a dictionary, a
set, or a sequence (e.g. a list) of (old, new) pairs to subs, e.g.
expr = x**3 + 4*x*y - z constructs the expression;
expr.subs({x: 2, y: 4, z: 0}) uses dict;
expr.subs([(x, 2), (y, 0)]) uses list of tuples.

Exercise: substitute π for x3, 1 for y , and
√
2 for z in expr

expr.subs({x**3: pi, y: 1, z: sqrt(2)})

6 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3

(sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8

(5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation

Expressions can be converted to floating-point approximations
(numbers) using either the evalf method or the N function.
N(expr, ...) is equivalent to sympify(expr).evalf(...).
sympify (aka S) converts its argument (a string, a numeric type,
a boolean, ...) to a type that can be used inside SymPy.

Examples: execute:
cos(1).evalf() default accuracy is 15 decimal digits,
pi.evalf(100) but it can be set; SymPy supports arbitrary-

precision floating point numbers;
N(pi, 100) similar to the previous one;
N("1/3", 100) thanks to sympify, N accepts strings;
N(x+pi) evaluates only π; the value of x is unknown.

Exercises: evaluate the given formulas to an accuracy of 20 digits:
1
√
3 · e10 + 1/3 (sqrt(3)*exp(10) + S(1)/3).evalf(20)

2 5 · x · π2 +
√
8 (5*x*pi**2 + sqrt(8)).evalf(20)

7 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8

expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3

expr.evalf(subs={y: sqrt(3)})

8 / 17

Evaluation with substitution

To numerically evaluate an expression with a Symbol at a point:
we might use subs followed by evalf (or N), for example:
cos(x).subs(x, 1).evalf(50) ≈ cos(1)
N(sqrt(x).subs(x, 3), 50) ≈

√
3

but it is more efficient and numerically stable to pass the
substitution to evalf (or N) using the subs flag, which takes
a dictionary of Symbol: point pairs. For instance:
cos(x).evalf(50, subs={x: 1}) ≈ cos(1)
N(sqrt(x), 50, subs={x: 3}) ≈

√
3

(x*y).evalf(subs={y: sqrt(2)}) ≈ x
√
2

(x*y).evalf(subs={x: 2, y: sqrt(2)}) ≈ 2
√
2

N("x/y", 100, subs={x: 1, y: 3}) ≈ 1/3
Exercises: define expr = x + y**2 and evaluate it at points:

1 x = π, y =
√
8 expr.evalf(subs={x: pi, y: sqrt(8)})

2 y =
√
3 expr.evalf(subs={y: sqrt(3)})

8 / 17

Plotting

The plot function plots functions of a single variable.

Examples: execute:
plot(x**2) plots x2 in the default range (−10, 10);
plot(x**2, (x, -2, 5)) plots in the given range (−2, 5);
plot(x**2, 3*x, (x, 0, 5)) plots both x2 and 3x ;
plot(x**2, (x,0,5), title="square", ylabel="x*x")
a title of the plot is “square”, a label for the y-axis is “x*x”;
plot(exp(x**2), (x, 0, 5)) plots exp(x2);
plot(exp(x**2), (x, 0, 5), yscale=’log’) uses a
logarithmic scale for the y-axis, which increases readability.

Exercise: plot sin(x) in the range (−2π, 2π)

Code: plot(sin(x), (x, -2*pi, 2*pi))

9 / 17

Plotting

The plot function plots functions of a single variable.

Examples: execute:
plot(x**2) plots x2 in the default range (−10, 10);
plot(x**2, (x, -2, 5)) plots in the given range (−2, 5);
plot(x**2, 3*x, (x, 0, 5)) plots both x2 and 3x ;
plot(x**2, (x,0,5), title="square", ylabel="x*x")
a title of the plot is “square”, a label for the y-axis is “x*x”;
plot(exp(x**2), (x, 0, 5)) plots exp(x2);
plot(exp(x**2), (x, 0, 5), yscale=’log’) uses a
logarithmic scale for the y-axis, which increases readability.

Exercise: plot sin(x) in the range (−2π, 2π)

Code: plot(sin(x), (x, -2*pi, 2*pi))

9 / 17

Plotting

The plot function plots functions of a single variable.

Examples: execute:
plot(x**2) plots x2 in the default range (−10, 10);
plot(x**2, (x, -2, 5)) plots in the given range (−2, 5);
plot(x**2, 3*x, (x, 0, 5)) plots both x2 and 3x ;
plot(x**2, (x,0,5), title="square", ylabel="x*x")
a title of the plot is “square”, a label for the y-axis is “x*x”;
plot(exp(x**2), (x, 0, 5)) plots exp(x2);
plot(exp(x**2), (x, 0, 5), yscale=’log’) uses a
logarithmic scale for the y-axis, which increases readability.

Exercise: plot sin(x) in the range (−2π, 2π)

Code: plot(sin(x), (x, -2*pi, 2*pi))

9 / 17

Plotting

The plot function plots functions of a single variable.

Examples: execute:
plot(x**2) plots x2 in the default range (−10, 10);
plot(x**2, (x, -2, 5)) plots in the given range (−2, 5);
plot(x**2, 3*x, (x, 0, 5)) plots both x2 and 3x ;
plot(x**2, (x,0,5), title="square", ylabel="x*x")
a title of the plot is “square”, a label for the y-axis is “x*x”;
plot(exp(x**2), (x, 0, 5)) plots exp(x2);
plot(exp(x**2), (x, 0, 5), yscale=’log’) uses a
logarithmic scale for the y-axis, which increases readability.

Exercise: plot sin(x) in the range (−2π, 2π)

Code: plot(sin(x), (x, -2*pi, 2*pi))

9 / 17

Plotting

The plot function plots functions of a single variable.

Examples: execute:
plot(x**2) plots x2 in the default range (−10, 10);
plot(x**2, (x, -2, 5)) plots in the given range (−2, 5);
plot(x**2, 3*x, (x, 0, 5)) plots both x2 and 3x ;
plot(x**2, (x,0,5), title="square", ylabel="x*x")
a title of the plot is “square”, a label for the y-axis is “x*x”;
plot(exp(x**2), (x, 0, 5)) plots exp(x2);
plot(exp(x**2), (x, 0, 5), yscale=’log’) uses a
logarithmic scale for the y-axis, which increases readability.

Exercise: plot sin(x) in the range (−2π, 2π)

Code: plot(sin(x), (x, -2*pi, 2*pi))

9 / 17

Plotting

The plot function plots functions of a single variable.

Examples: execute:
plot(x**2) plots x2 in the default range (−10, 10);
plot(x**2, (x, -2, 5)) plots in the given range (−2, 5);
plot(x**2, 3*x, (x, 0, 5)) plots both x2 and 3x ;
plot(x**2, (x,0,5), title="square", ylabel="x*x")
a title of the plot is “square”, a label for the y-axis is “x*x”;
plot(exp(x**2), (x, 0, 5)) plots exp(x2);
plot(exp(x**2), (x, 0, 5), yscale=’log’) uses a
logarithmic scale for the y-axis, which increases readability.

Exercise: plot sin(x) in the range (−2π, 2π)

Code: plot(sin(x), (x, -2*pi, 2*pi))

9 / 17

Plotting

The plot function plots functions of a single variable.

Examples: execute:
plot(x**2) plots x2 in the default range (−10, 10);
plot(x**2, (x, -2, 5)) plots in the given range (−2, 5);
plot(x**2, 3*x, (x, 0, 5)) plots both x2 and 3x ;
plot(x**2, (x,0,5), title="square", ylabel="x*x")
a title of the plot is “square”, a label for the y-axis is “x*x”;
plot(exp(x**2), (x, 0, 5)) plots exp(x2);
plot(exp(x**2), (x, 0, 5), yscale=’log’) uses a
logarithmic scale for the y-axis, which increases readability.

Exercise: plot sin(x) in the range (−2π, 2π)

Code: plot(sin(x), (x, -2*pi, 2*pi))

9 / 17

Plotting

The plot function plots functions of a single variable.

Examples: execute:
plot(x**2) plots x2 in the default range (−10, 10);
plot(x**2, (x, -2, 5)) plots in the given range (−2, 5);
plot(x**2, 3*x, (x, 0, 5)) plots both x2 and 3x ;
plot(x**2, (x,0,5), title="square", ylabel="x*x")
a title of the plot is “square”, a label for the y-axis is “x*x”;
plot(exp(x**2), (x, 0, 5)) plots exp(x2);
plot(exp(x**2), (x, 0, 5), yscale=’log’) uses a
logarithmic scale for the y-axis, which increases readability.

Exercise: plot sin(x) in the range (−2π, 2π)

Code: plot(sin(x), (x, -2*pi, 2*pi))

9 / 17

Plotting

The plot function plots functions of a single variable.

Examples: execute:
plot(x**2) plots x2 in the default range (−10, 10);
plot(x**2, (x, -2, 5)) plots in the given range (−2, 5);
plot(x**2, 3*x, (x, 0, 5)) plots both x2 and 3x ;
plot(x**2, (x,0,5), title="square", ylabel="x*x")
a title of the plot is “square”, a label for the y-axis is “x*x”;
plot(exp(x**2), (x, 0, 5)) plots exp(x2);
plot(exp(x**2), (x, 0, 5), yscale=’log’) uses a
logarithmic scale for the y-axis, which increases readability.

Exercise: plot sin(x) in the range (−2π, 2π)
Code: plot(sin(x), (x, -2*pi, 2*pi))

9 / 17

Limits

limit(f(x), x, p) computes limx→p f (x)
(the limit of f(x) at the point p), e.g. (execute):
limit(sin(x)/x, x, 0) computes limx→0

sin(x)
x ;

limit(x+y, x, 2) computes limx→2(x + y);
limit(x**2/exp(x), x, oo) computes limx→∞

x2

ex .

oo (the lowercase letter “o” twice) denotes ∞ (infinity).

To evaluate a one-sided limit, pass additional ’+’ or ’-’
argument, e.g. limit(1/x, x, 0, ’+’) computes limx→0+ 1

x .

Exercises: compute:
1 limx→0−

1
x

Code: limit(1/x, x, 0, ’-’)

2 limx→0
x+y

x

Code: limit((x+y)/x, x, 0)

3 limx→−∞ sin(x)

Code: limit(sin(x), x, -oo)

10 / 17

Limits

limit(f(x), x, p) computes limx→p f (x)
(the limit of f(x) at the point p), e.g. (execute):
limit(sin(x)/x, x, 0) computes limx→0

sin(x)
x ;

limit(x+y, x, 2) computes limx→2(x + y);
limit(x**2/exp(x), x, oo) computes limx→∞

x2

ex .

oo (the lowercase letter “o” twice) denotes ∞ (infinity).

To evaluate a one-sided limit, pass additional ’+’ or ’-’
argument, e.g. limit(1/x, x, 0, ’+’) computes limx→0+ 1

x .

Exercises: compute:
1 limx→0−

1
x

Code: limit(1/x, x, 0, ’-’)

2 limx→0
x+y

x

Code: limit((x+y)/x, x, 0)

3 limx→−∞ sin(x)

Code: limit(sin(x), x, -oo)

10 / 17

Limits

limit(f(x), x, p) computes limx→p f (x)
(the limit of f(x) at the point p), e.g. (execute):
limit(sin(x)/x, x, 0) computes limx→0

sin(x)
x ;

limit(x+y, x, 2) computes limx→2(x + y);
limit(x**2/exp(x), x, oo) computes limx→∞

x2

ex .

oo (the lowercase letter “o” twice) denotes ∞ (infinity).

To evaluate a one-sided limit, pass additional ’+’ or ’-’
argument, e.g. limit(1/x, x, 0, ’+’) computes limx→0+ 1

x .

Exercises: compute:
1 limx→0−

1
x

Code: limit(1/x, x, 0, ’-’)

2 limx→0
x+y

x

Code: limit((x+y)/x, x, 0)

3 limx→−∞ sin(x)

Code: limit(sin(x), x, -oo)

10 / 17

Limits

limit(f(x), x, p) computes limx→p f (x)
(the limit of f(x) at the point p), e.g. (execute):
limit(sin(x)/x, x, 0) computes limx→0

sin(x)
x ;

limit(x+y, x, 2) computes limx→2(x + y);
limit(x**2/exp(x), x, oo) computes limx→∞

x2

ex .

oo (the lowercase letter “o” twice) denotes ∞ (infinity).

To evaluate a one-sided limit, pass additional ’+’ or ’-’
argument, e.g. limit(1/x, x, 0, ’+’) computes limx→0+ 1

x .

Exercises: compute:
1 limx→0−

1
x

Code: limit(1/x, x, 0, ’-’)

2 limx→0
x+y

x

Code: limit((x+y)/x, x, 0)

3 limx→−∞ sin(x)

Code: limit(sin(x), x, -oo)

10 / 17

Limits

limit(f(x), x, p) computes limx→p f (x)
(the limit of f(x) at the point p), e.g. (execute):
limit(sin(x)/x, x, 0) computes limx→0

sin(x)
x ;

limit(x+y, x, 2) computes limx→2(x + y);
limit(x**2/exp(x), x, oo) computes limx→∞

x2

ex .

oo (the lowercase letter “o” twice) denotes ∞ (infinity).

To evaluate a one-sided limit, pass additional ’+’ or ’-’
argument, e.g. limit(1/x, x, 0, ’+’) computes limx→0+ 1

x .

Exercises: compute:
1 limx→0−

1
x

Code: limit(1/x, x, 0, ’-’)

2 limx→0
x+y

x

Code: limit((x+y)/x, x, 0)

3 limx→−∞ sin(x)

Code: limit(sin(x), x, -oo)

10 / 17

Limits

limit(f(x), x, p) computes limx→p f (x)
(the limit of f(x) at the point p), e.g. (execute):
limit(sin(x)/x, x, 0) computes limx→0

sin(x)
x ;

limit(x+y, x, 2) computes limx→2(x + y);
limit(x**2/exp(x), x, oo) computes limx→∞

x2

ex .

oo (the lowercase letter “o” twice) denotes ∞ (infinity).

To evaluate a one-sided limit, pass additional ’+’ or ’-’
argument, e.g. limit(1/x, x, 0, ’+’) computes limx→0+ 1

x .

Exercises: compute:
1 limx→0−

1
x

Code: limit(1/x, x, 0, ’-’)

2 limx→0
x+y

x

Code: limit((x+y)/x, x, 0)

3 limx→−∞ sin(x)

Code: limit(sin(x), x, -oo)

10 / 17

Limits

limit(f(x), x, p) computes limx→p f (x)
(the limit of f(x) at the point p), e.g. (execute):
limit(sin(x)/x, x, 0) computes limx→0

sin(x)
x ;

limit(x+y, x, 2) computes limx→2(x + y);
limit(x**2/exp(x), x, oo) computes limx→∞

x2

ex .

oo (the lowercase letter “o” twice) denotes ∞ (infinity).

To evaluate a one-sided limit, pass additional ’+’ or ’-’
argument, e.g. limit(1/x, x, 0, ’+’) computes limx→0+ 1

x .

Exercises: compute:
1 limx→0−

1
x Code: limit(1/x, x, 0, ’-’)

2 limx→0
x+y

x Code: limit((x+y)/x, x, 0)

3 limx→−∞ sin(x) Code: limit(sin(x), x, -oo)

10 / 17

Sums and products
summation(f, (i, a, b)) computes

∑b
i=a f (i) (the sum of f

with respect to i from a to b);
product(f, (i, a, b)) computes

∏b
i=a f (i) (the product of f

with respect to i from a to b).
Example: execute:
i,n = symbols(’i,n’, integer=True) defines integer symbols;
summation(1/(2**i), (i, 1, oo)) =

∑∞
i=1

1
2i = 1

2 + 1
4 + . . . ;

summation(x/(2**i), (i, 1, oo)) =
∑∞

i=1
x
2i = x

2 + x
4 + . . . ;

product(n**n, (n, 5, 20))
∏20

n=5 nn = 55 · 66 · . . . · 2020;
product(i, (i, 1, n))

∏n
i=1 i = n!.

Exercise: calculate:
1
∏10

i=1 ni

product(n**i, (i, 1, 10))

2
∑∞

n=1
6
n2

summation(6/n**2, (n, 1, oo))

3
∑∞

n=1
xn

n! (simplify the result expression)

summation(x**n/factorial(n), (n, 1, oo)).simplify()

11 / 17

Sums and products
summation(f, (i, a, b)) computes

∑b
i=a f (i) (the sum of f

with respect to i from a to b);
product(f, (i, a, b)) computes

∏b
i=a f (i) (the product of f

with respect to i from a to b).
Example: execute:
i,n = symbols(’i,n’, integer=True) defines integer symbols;
summation(1/(2**i), (i, 1, oo)) =

∑∞
i=1

1
2i = 1

2 + 1
4 + . . . ;

summation(x/(2**i), (i, 1, oo)) =
∑∞

i=1
x
2i = x

2 + x
4 + . . . ;

product(n**n, (n, 5, 20))
∏20

n=5 nn = 55 · 66 · . . . · 2020;
product(i, (i, 1, n))

∏n
i=1 i = n!.

Exercise: calculate:
1
∏10

i=1 ni

product(n**i, (i, 1, 10))

2
∑∞

n=1
6
n2

summation(6/n**2, (n, 1, oo))

3
∑∞

n=1
xn

n! (simplify the result expression)

summation(x**n/factorial(n), (n, 1, oo)).simplify()

11 / 17

Sums and products
summation(f, (i, a, b)) computes

∑b
i=a f (i) (the sum of f

with respect to i from a to b);
product(f, (i, a, b)) computes

∏b
i=a f (i) (the product of f

with respect to i from a to b).
Example: execute:
i,n = symbols(’i,n’, integer=True) defines integer symbols;
summation(1/(2**i), (i, 1, oo)) =

∑∞
i=1

1
2i = 1

2 + 1
4 + . . . ;

summation(x/(2**i), (i, 1, oo)) =
∑∞

i=1
x
2i = x

2 + x
4 + . . . ;

product(n**n, (n, 5, 20))
∏20

n=5 nn = 55 · 66 · . . . · 2020;
product(i, (i, 1, n))

∏n
i=1 i = n!.

Exercise: calculate:
1
∏10

i=1 ni

product(n**i, (i, 1, 10))

2
∑∞

n=1
6
n2

summation(6/n**2, (n, 1, oo))

3
∑∞

n=1
xn

n! (simplify the result expression)

summation(x**n/factorial(n), (n, 1, oo)).simplify()

11 / 17

Sums and products
summation(f, (i, a, b)) computes

∑b
i=a f (i) (the sum of f

with respect to i from a to b);
product(f, (i, a, b)) computes

∏b
i=a f (i) (the product of f

with respect to i from a to b).
Example: execute:
i,n = symbols(’i,n’, integer=True) defines integer symbols;
summation(1/(2**i), (i, 1, oo)) =

∑∞
i=1

1
2i = 1

2 + 1
4 + . . . ;

summation(x/(2**i), (i, 1, oo)) =
∑∞

i=1
x
2i = x

2 + x
4 + . . . ;

product(n**n, (n, 5, 20))
∏20

n=5 nn = 55 · 66 · . . . · 2020;
product(i, (i, 1, n))

∏n
i=1 i = n!.

Exercise: calculate:
1
∏10

i=1 ni

product(n**i, (i, 1, 10))

2
∑∞

n=1
6
n2

summation(6/n**2, (n, 1, oo))

3
∑∞

n=1
xn

n! (simplify the result expression)

summation(x**n/factorial(n), (n, 1, oo)).simplify()

11 / 17

Sums and products
summation(f, (i, a, b)) computes

∑b
i=a f (i) (the sum of f

with respect to i from a to b);
product(f, (i, a, b)) computes

∏b
i=a f (i) (the product of f

with respect to i from a to b).
Example: execute:
i,n = symbols(’i,n’, integer=True) defines integer symbols;
summation(1/(2**i), (i, 1, oo)) =

∑∞
i=1

1
2i = 1

2 + 1
4 + . . . ;

summation(x/(2**i), (i, 1, oo)) =
∑∞

i=1
x
2i = x

2 + x
4 + . . . ;

product(n**n, (n, 5, 20))
∏20

n=5 nn = 55 · 66 · . . . · 2020;
product(i, (i, 1, n))

∏n
i=1 i = n!.

Exercise: calculate:
1
∏10

i=1 ni

product(n**i, (i, 1, 10))

2
∑∞

n=1
6
n2

summation(6/n**2, (n, 1, oo))

3
∑∞

n=1
xn

n! (simplify the result expression)

summation(x**n/factorial(n), (n, 1, oo)).simplify()

11 / 17

Sums and products
summation(f, (i, a, b)) computes

∑b
i=a f (i) (the sum of f

with respect to i from a to b);
product(f, (i, a, b)) computes

∏b
i=a f (i) (the product of f

with respect to i from a to b).
Example: execute:
i,n = symbols(’i,n’, integer=True) defines integer symbols;
summation(1/(2**i), (i, 1, oo)) =

∑∞
i=1

1
2i = 1

2 + 1
4 + . . . ;

summation(x/(2**i), (i, 1, oo)) =
∑∞

i=1
x
2i = x

2 + x
4 + . . . ;

product(n**n, (n, 5, 20))
∏20

n=5 nn = 55 · 66 · . . . · 2020;
product(i, (i, 1, n))

∏n
i=1 i = n!.

Exercise: calculate:
1
∏10

i=1 ni

product(n**i, (i, 1, 10))

2
∑∞

n=1
6
n2

summation(6/n**2, (n, 1, oo))

3
∑∞

n=1
xn

n! (simplify the result expression)

summation(x**n/factorial(n), (n, 1, oo)).simplify()

11 / 17

Sums and products
summation(f, (i, a, b)) computes

∑b
i=a f (i) (the sum of f

with respect to i from a to b);
product(f, (i, a, b)) computes

∏b
i=a f (i) (the product of f

with respect to i from a to b).
Example: execute:
i,n = symbols(’i,n’, integer=True) defines integer symbols;
summation(1/(2**i), (i, 1, oo)) =

∑∞
i=1

1
2i = 1

2 + 1
4 + . . . ;

summation(x/(2**i), (i, 1, oo)) =
∑∞

i=1
x
2i = x

2 + x
4 + . . . ;

product(n**n, (n, 5, 20))
∏20

n=5 nn = 55 · 66 · . . . · 2020;
product(i, (i, 1, n))

∏n
i=1 i = n!.

Exercise: calculate:
1
∏10

i=1 ni

product(n**i, (i, 1, 10))

2
∑∞

n=1
6
n2

summation(6/n**2, (n, 1, oo))

3
∑∞

n=1
xn

n! (simplify the result expression)

summation(x**n/factorial(n), (n, 1, oo)).simplify()

11 / 17

Sums and products
summation(f, (i, a, b)) computes

∑b
i=a f (i) (the sum of f

with respect to i from a to b);
product(f, (i, a, b)) computes

∏b
i=a f (i) (the product of f

with respect to i from a to b).
Example: execute:
i,n = symbols(’i,n’, integer=True) defines integer symbols;
summation(1/(2**i), (i, 1, oo)) =

∑∞
i=1

1
2i = 1

2 + 1
4 + . . . ;

summation(x/(2**i), (i, 1, oo)) =
∑∞

i=1
x
2i = x

2 + x
4 + . . . ;

product(n**n, (n, 5, 20))
∏20

n=5 nn = 55 · 66 · . . . · 2020;
product(i, (i, 1, n))

∏n
i=1 i = n!.

Exercise: calculate:
1
∏10

i=1 ni

product(n**i, (i, 1, 10))

2
∑∞

n=1
6
n2

summation(6/n**2, (n, 1, oo))

3
∑∞

n=1
xn

n! (simplify the result expression)

summation(x**n/factorial(n), (n, 1, oo)).simplify()

11 / 17

Sums and products
summation(f, (i, a, b)) computes

∑b
i=a f (i) (the sum of f

with respect to i from a to b);
product(f, (i, a, b)) computes

∏b
i=a f (i) (the product of f

with respect to i from a to b).
Example: execute:
i,n = symbols(’i,n’, integer=True) defines integer symbols;
summation(1/(2**i), (i, 1, oo)) =

∑∞
i=1

1
2i = 1

2 + 1
4 + . . . ;

summation(x/(2**i), (i, 1, oo)) =
∑∞

i=1
x
2i = x

2 + x
4 + . . . ;

product(n**n, (n, 5, 20))
∏20

n=5 nn = 55 · 66 · . . . · 2020;
product(i, (i, 1, n))

∏n
i=1 i = n!.

Exercise: calculate:
1
∏10

i=1 ni product(n**i, (i, 1, 10))

2
∑∞

n=1
6
n2 summation(6/n**2, (n, 1, oo))

3
∑∞

n=1
xn

n! (simplify the result expression)
summation(x**n/factorial(n), (n, 1, oo)).simplify()

11 / 17

Solving inequalities and equations algebraically
solveset(f, symbol, domain) solves the inequality or equation
f over domain (S.Complexes by default); returns a set of all
values for symbol for which f is True or is equal to zero.
Examples: execute:

solveset(x**2>2, x, S.Reals) solves x2 > 2 for real x ;
solveset(Eq(x**4, 2), x) and solveset(x**4-2, x)
both solve x4 = 2; equations may be in the form of Eq
instances or expressions that are assumed to be equal to 0;
a,b,c = symbols(’a,b,c’)
simplify(solveset(a*x**2 + b*x + c, x)) finds (and
simplifies) the general solution of quadratic equation.

Exercises: find all real x such that:
1 x4 = 2

solveset(x**4 - 2, x, S.Reals)

2 sin(x) = cos(x)

solveset(sin(x)-cos(x), x, S.Reals)

3 x2 > 2 ∧ x < 5 (hint: use & to intersect solveset results)

solveset(x**2>2,x,S.Reals)&solveset(x<5,x,S.Reals)

12 / 17

Solving inequalities and equations algebraically
solveset(f, symbol, domain) solves the inequality or equation
f over domain (S.Complexes by default); returns a set of all
values for symbol for which f is True or is equal to zero.
Examples: execute:

solveset(x**2>2, x, S.Reals) solves x2 > 2 for real x ;
solveset(Eq(x**4, 2), x) and solveset(x**4-2, x)
both solve x4 = 2; equations may be in the form of Eq
instances or expressions that are assumed to be equal to 0;
a,b,c = symbols(’a,b,c’)
simplify(solveset(a*x**2 + b*x + c, x)) finds (and
simplifies) the general solution of quadratic equation.

Exercises: find all real x such that:
1 x4 = 2

solveset(x**4 - 2, x, S.Reals)

2 sin(x) = cos(x)

solveset(sin(x)-cos(x), x, S.Reals)

3 x2 > 2 ∧ x < 5 (hint: use & to intersect solveset results)

solveset(x**2>2,x,S.Reals)&solveset(x<5,x,S.Reals)

12 / 17

Solving inequalities and equations algebraically
solveset(f, symbol, domain) solves the inequality or equation
f over domain (S.Complexes by default); returns a set of all
values for symbol for which f is True or is equal to zero.
Examples: execute:

solveset(x**2>2, x, S.Reals) solves x2 > 2 for real x ;
solveset(Eq(x**4, 2), x) and solveset(x**4-2, x)
both solve x4 = 2; equations may be in the form of Eq
instances or expressions that are assumed to be equal to 0;
a,b,c = symbols(’a,b,c’)
simplify(solveset(a*x**2 + b*x + c, x)) finds (and
simplifies) the general solution of quadratic equation.

Exercises: find all real x such that:
1 x4 = 2

solveset(x**4 - 2, x, S.Reals)

2 sin(x) = cos(x)

solveset(sin(x)-cos(x), x, S.Reals)

3 x2 > 2 ∧ x < 5 (hint: use & to intersect solveset results)

solveset(x**2>2,x,S.Reals)&solveset(x<5,x,S.Reals)

12 / 17

Solving inequalities and equations algebraically
solveset(f, symbol, domain) solves the inequality or equation
f over domain (S.Complexes by default); returns a set of all
values for symbol for which f is True or is equal to zero.
Examples: execute:

solveset(x**2>2, x, S.Reals) solves x2 > 2 for real x ;
solveset(Eq(x**4, 2), x) and solveset(x**4-2, x)
both solve x4 = 2; equations may be in the form of Eq
instances or expressions that are assumed to be equal to 0;
a,b,c = symbols(’a,b,c’)
simplify(solveset(a*x**2 + b*x + c, x)) finds (and
simplifies) the general solution of quadratic equation.

Exercises: find all real x such that:
1 x4 = 2

solveset(x**4 - 2, x, S.Reals)

2 sin(x) = cos(x)

solveset(sin(x)-cos(x), x, S.Reals)

3 x2 > 2 ∧ x < 5 (hint: use & to intersect solveset results)

solveset(x**2>2,x,S.Reals)&solveset(x<5,x,S.Reals)

12 / 17

Solving inequalities and equations algebraically
solveset(f, symbol, domain) solves the inequality or equation
f over domain (S.Complexes by default); returns a set of all
values for symbol for which f is True or is equal to zero.
Examples: execute:

solveset(x**2>2, x, S.Reals) solves x2 > 2 for real x ;
solveset(Eq(x**4, 2), x) and solveset(x**4-2, x)
both solve x4 = 2; equations may be in the form of Eq
instances or expressions that are assumed to be equal to 0;
a,b,c = symbols(’a,b,c’)
simplify(solveset(a*x**2 + b*x + c, x)) finds (and
simplifies) the general solution of quadratic equation.

Exercises: find all real x such that:
1 x4 = 2

solveset(x**4 - 2, x, S.Reals)

2 sin(x) = cos(x)

solveset(sin(x)-cos(x), x, S.Reals)

3 x2 > 2 ∧ x < 5 (hint: use & to intersect solveset results)

solveset(x**2>2,x,S.Reals)&solveset(x<5,x,S.Reals)

12 / 17

Solving inequalities and equations algebraically
solveset(f, symbol, domain) solves the inequality or equation
f over domain (S.Complexes by default); returns a set of all
values for symbol for which f is True or is equal to zero.
Examples: execute:

solveset(x**2>2, x, S.Reals) solves x2 > 2 for real x ;
solveset(Eq(x**4, 2), x) and solveset(x**4-2, x)
both solve x4 = 2; equations may be in the form of Eq
instances or expressions that are assumed to be equal to 0;
a,b,c = symbols(’a,b,c’)
simplify(solveset(a*x**2 + b*x + c, x)) finds (and
simplifies) the general solution of quadratic equation.

Exercises: find all real x such that:
1 x4 = 2 solveset(x**4 - 2, x, S.Reals)
2 sin(x) = cos(x) solveset(sin(x)-cos(x), x, S.Reals)
3 x2 > 2 ∧ x < 5 (hint: use & to intersect solveset results)

solveset(x**2>2,x,S.Reals)&solveset(x<5,x,S.Reals)
12 / 17

Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17

Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17

Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17

Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17

Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17

Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x

Code: diff(x**3+2*y, x)

2 y

Code: diff(x**3+2*y, y)

13 / 17

Derivatives
To take derivatives, use the diff function, e.g. diff(cos(x), x)
differentiates cos(x) with respect to x ; ∂

∂x cos(x).
To take multiple derivatives, pass the variable as many times as
you wish to differentiate, or pass a number after the variable.
For example both diff(x**4, x, x, x) and
diff(x**4, x, 3) find the third derivative of x4.
To take derivatives with respect to many variables at once, just
pass each derivative in order, e.g. each of the following will
compute ∂7

∂x∂y2∂z4 exyz :
diff(exp(x*y*z), x, y, y, z, z, z, z)
diff(exp(x*y*z), x, y, 2, z, 4)
diff(exp(x*y*z), x, y, y, z, 4)

Exercise: differentiates x3 + 2y with respect to:
1 x Code: diff(x**3+2*y, x)

2 y Code: diff(x**3+2*y, y)
13 / 17

Integrals

To compute an integral, use the integrate function.

To compute an indefinite integral, just pass the variable after the
expression, e.g. integrate(cos(x), x) calculates

∫
cos(x) dx .

(Note that SymPy does not include the constant of integration.)

To compute a definite integral, pass a tuple
(integration_variable, lower_limit, upper_limit), e.g.
integrate(exp(-x), (x, 0, oo)) calculates

∫∞
0 e−x dx .

You can pass multiple limit tuples to perform a multiple integral,
e.g. integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))
computes

∫∞
−∞

∫∞
−∞ e−x2−y2 dx dy .

Exercises: calculate:
1
∫

x cos(x) dx

Code: integrate(x*cos(x), x)

2
∫ 2π

0 sin(x) dx

Code: integrate(sin(x), (x, 0, 2*pi))

3
∫∞

1
1
x dx

Code: integrate(1/x, (x, 1, oo))

14 / 17

Integrals

To compute an integral, use the integrate function.

To compute an indefinite integral, just pass the variable after the
expression, e.g. integrate(cos(x), x) calculates

∫
cos(x) dx .

(Note that SymPy does not include the constant of integration.)

To compute a definite integral, pass a tuple
(integration_variable, lower_limit, upper_limit), e.g.
integrate(exp(-x), (x, 0, oo)) calculates

∫∞
0 e−x dx .

You can pass multiple limit tuples to perform a multiple integral,
e.g. integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))
computes

∫∞
−∞

∫∞
−∞ e−x2−y2 dx dy .

Exercises: calculate:
1
∫

x cos(x) dx

Code: integrate(x*cos(x), x)

2
∫ 2π

0 sin(x) dx

Code: integrate(sin(x), (x, 0, 2*pi))

3
∫∞

1
1
x dx

Code: integrate(1/x, (x, 1, oo))

14 / 17

Integrals

To compute an integral, use the integrate function.

To compute an indefinite integral, just pass the variable after the
expression, e.g. integrate(cos(x), x) calculates

∫
cos(x) dx .

(Note that SymPy does not include the constant of integration.)

To compute a definite integral, pass a tuple
(integration_variable, lower_limit, upper_limit), e.g.
integrate(exp(-x), (x, 0, oo)) calculates

∫∞
0 e−x dx .

You can pass multiple limit tuples to perform a multiple integral,
e.g. integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))
computes

∫∞
−∞

∫∞
−∞ e−x2−y2 dx dy .

Exercises: calculate:
1
∫

x cos(x) dx

Code: integrate(x*cos(x), x)

2
∫ 2π

0 sin(x) dx

Code: integrate(sin(x), (x, 0, 2*pi))

3
∫∞

1
1
x dx

Code: integrate(1/x, (x, 1, oo))

14 / 17

Integrals

To compute an integral, use the integrate function.

To compute an indefinite integral, just pass the variable after the
expression, e.g. integrate(cos(x), x) calculates

∫
cos(x) dx .

(Note that SymPy does not include the constant of integration.)

To compute a definite integral, pass a tuple
(integration_variable, lower_limit, upper_limit), e.g.
integrate(exp(-x), (x, 0, oo)) calculates

∫∞
0 e−x dx .

You can pass multiple limit tuples to perform a multiple integral,
e.g. integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))
computes

∫∞
−∞

∫∞
−∞ e−x2−y2 dx dy .

Exercises: calculate:
1
∫

x cos(x) dx

Code: integrate(x*cos(x), x)

2
∫ 2π

0 sin(x) dx

Code: integrate(sin(x), (x, 0, 2*pi))

3
∫∞

1
1
x dx

Code: integrate(1/x, (x, 1, oo))

14 / 17

Integrals

To compute an integral, use the integrate function.

To compute an indefinite integral, just pass the variable after the
expression, e.g. integrate(cos(x), x) calculates

∫
cos(x) dx .

(Note that SymPy does not include the constant of integration.)

To compute a definite integral, pass a tuple
(integration_variable, lower_limit, upper_limit), e.g.
integrate(exp(-x), (x, 0, oo)) calculates

∫∞
0 e−x dx .

You can pass multiple limit tuples to perform a multiple integral,
e.g. integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))
computes

∫∞
−∞

∫∞
−∞ e−x2−y2 dx dy .

Exercises: calculate:
1
∫

x cos(x) dx

Code: integrate(x*cos(x), x)

2
∫ 2π

0 sin(x) dx

Code: integrate(sin(x), (x, 0, 2*pi))

3
∫∞

1
1
x dx

Code: integrate(1/x, (x, 1, oo))

14 / 17

Integrals

To compute an integral, use the integrate function.

To compute an indefinite integral, just pass the variable after the
expression, e.g. integrate(cos(x), x) calculates

∫
cos(x) dx .

(Note that SymPy does not include the constant of integration.)

To compute a definite integral, pass a tuple
(integration_variable, lower_limit, upper_limit), e.g.
integrate(exp(-x), (x, 0, oo)) calculates

∫∞
0 e−x dx .

You can pass multiple limit tuples to perform a multiple integral,
e.g. integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))
computes

∫∞
−∞

∫∞
−∞ e−x2−y2 dx dy .

Exercises: calculate:
1
∫

x cos(x) dx Code: integrate(x*cos(x), x)

2
∫ 2π

0 sin(x) dx Code: integrate(sin(x), (x, 0, 2*pi))

3
∫∞

1
1
x dx Code: integrate(1/x, (x, 1, oo))

14 / 17

Unevaluated objects

SymPy contains classes whose instances (so called
unevaluated objects) represent unevaluated operations,
for example:

Derivative
(its constructor takes the same arguments as diff);
Integral
(its constructor takes the same arguments as integrate);
Sum
(its constructor takes the same arguments as summation);

unevaluated objects are useful for delaying the evaluation, or
for printing purposes, for instance (execute):
der = Derivative(x**3 * y**2, x, x, y)
der displays der,
latex(der) LATEX representation of der;
der.doit() solves der.

unevaluated objects are also returned by diff, integrate,
etc. when SymPy does not know how to compute something.
For example try: integrate(x**x, x)

15 / 17

Unevaluated objects

SymPy contains classes whose instances (so called
unevaluated objects) represent unevaluated operations,
for example:

Derivative
(its constructor takes the same arguments as diff);
Integral
(its constructor takes the same arguments as integrate);
Sum
(its constructor takes the same arguments as summation);

unevaluated objects are useful for delaying the evaluation, or
for printing purposes, for instance (execute):
der = Derivative(x**3 * y**2, x, x, y)
der displays der,
latex(der) LATEX representation of der;
der.doit() solves der.

unevaluated objects are also returned by diff, integrate,
etc. when SymPy does not know how to compute something.
For example try: integrate(x**x, x)

15 / 17

Unevaluated objects

SymPy contains classes whose instances (so called
unevaluated objects) represent unevaluated operations,
for example:

Derivative
(its constructor takes the same arguments as diff);
Integral
(its constructor takes the same arguments as integrate);
Sum
(its constructor takes the same arguments as summation);

unevaluated objects are useful for delaying the evaluation, or
for printing purposes, for instance (execute):
der = Derivative(x**3 * y**2, x, x, y)
der displays der,
latex(der) LATEX representation of der;
der.doit() solves der.

unevaluated objects are also returned by diff, integrate,
etc. when SymPy does not know how to compute something.
For example try: integrate(x**x, x)

15 / 17

Homework

1 simplify the formula x2+x
x sin2(y)+x cos2(y) ;

2 calculate limx→−∞
(

1
x ln (ex + 1)

)
;

3 find all real x such that x2 + 2 > x3 ∧
√

x + 2 > x ;
4 solve ax3 + bx2 + cx + d = 0 for x ;
5 evaluate ∂2

∂x∂y (sin (x + y) cos (xy)) to an accuracy of 30
decimal digits at point x = −1, y = 2;

6 plot both f (x) = 3x2 and ∂
∂x f (x) together in the range (0, 5);

7 plot f (x) = limn→∞
(
1 + 1

n

)nx
in the range (−1, 1);

8 evaluate
∫∞
−∞ e−x2 dx to an accuracy of 50 digits;

9 plot
∫

e−x2 dx in the range (−4, 4);
10 for volunteers: find a simple formula for the area of a triangle

with vertices at points: (0, 0), (a, b), (c, d). Next, evaluate
the formula for a = 2, b = 2, c = 4, d = 0.

Please note all the expressions you used.
16 / 17

Bibliography

Official SymPy’s documentation (especially SymPy Tutorial),
available on http://docs.sympy.org/
Jonathan Gross Math and Physics with SymPy, available on
http://www.jonathangross.de/files/IPCS2016/sympy.pdf
Paul Lutus IPython: Math Processor, available on
http://arachnoid.com/IPython/

17 / 17

http://docs.sympy.org/
http://www.jonathangross.de/files/IPCS2016/sympy.pdf
http://arachnoid.com/IPython/

	What is Symbolic Computation?
	Variables, symbols and expressions
	Evaluation and substitution
	Plotting
	Limits
	Sums and products
	Equations and inequalities
	Derivatives
	Integrals
	Unevaluated objects
	Homework
	Bibliography

